摘要:
An electronic device assembly for dense mounting of electronic devices and method of connecting the electronic devices are disclosed. Conductive portions implemented by metal bumps and sealing portions implemented by adhesive seal resin are connected by thermocompression at the same time between two electronic devices. This may be repeated between three or more electronic device.
摘要:
A three-dimensional memory module includes a plurality of semiconductor device units, every adjacent two of which are stack-connected via through-holes by a bump connecting method. Each of the plurality of semiconductor device units includes a carrier having a circuit pattern and the through-holes connected to the circuit pattern. The semiconductor device unit also includes at least one semiconductor memory chip mounted on the carrier such that the semiconductor memory chip is connected to the circuit pattern, and at least one chip select semiconductor chip mounted on the carrier to be connected to the circuit pattern such that the chip select semiconductor chip can select the semiconductor memory chip.
摘要:
A sealing structure for bumps on a semiconductor integrated circuit chip to be bonded through the bumps onto a circuit board is provided wherein a plurality of pads are formed on the semiconductor integrated circuit chip. Each of the pads is formed with a bump thereon. A coating material is provided to coat at least surfaces of the above a plurality of bumps. The material is made of an insulation material having a hardness sufficiently small for showing, when bonding the chip onto the circuit board, a deformation thereby at least a top portion of each of the bumps is made contact with pads provided on the circuit board.
摘要:
Disclosed is a bump structure, which has a hollow body, for electrically connecting a first member and a second member. Also disclosed is a method for making a bump structure, which has the steps of: preparing a molding plate with a concave mold to mold a bump-forming member; forming a conductive thin film so as to form a predetermined cavity in the concave mold of the molding plate; preparing a substrate to which the conductive thin film is to be transferred; and transferring the conductive thin film formed on the molding plate to the substrate.
摘要:
A semiconductor chip is mounted on a semiconductor chip carrier through a flip chip bonding technique; the semiconductor chip carrier includes an insulating layer such as synthetic resin having a mounting area assigned to the semiconductor chip and a conductive pattern having pads bonded to bumps of the semiconductor chip, and only the pads are formed in the mounting area so that melted synthetic resin smoothly flows into the gaps between the insulating synthetic resin layer and the semiconductor chip.
摘要:
The invention provides a semiconductor device including a semiconductor substrate formed thereon with at least one recessed portion, an electrically conductive layer covering at least a surface of the recessed portion therewith, and a ball-bump formed on the electrically conductive layer within the recessed portion. The semiconductor device can act as a probe card by additionally having a tester device formed in the semiconductor substrate and provided with a function of testing electrical performances of a semiconductor device. Since the recessed portion can be formed by lithography technique, it is possible to arrange the greater number of pins in a smaller pitch, and in addition, it is also possible to locate ball-bumps in place with higher accuracy than a conventional semiconductor device.
摘要:
A solder ball arrangement device has a thin arrangement plate having a plurality of through-holes of a truncated pyramid shape, a porous member bonded to the arrangement plate, and a housing member for receiving the arrangement plate and the porous member for defining an air space inside the housing member. A suction pump is provided to evacuate the air space and to receive an array of solder balls in the through-holes by suction. The through-holes are formed by etching, and the porous member reinforces the thin arrangement plate.
摘要:
The present invention adopts a circuit pattern in which in a carrier of a package for coupling semiconductor devices at multistage, drawing out lines for selecting individual semiconductor devices are coupled in parallel. Thus, the present invention achieves the multistage coupling semiconductor device which can be completed with a circuit pattern of one kind regardless of the number of stages of a multistage. Using the carrier having the foregoing structure, the semiconductor device is assembled and is subjected to characteristic inspections. Thereafter, the circuit patterns, coupled in parallel, having good electrical characteristics are partially cut by either laser, sand-blast, or etching. The products can be specified according to the circuit pattern which is cut.
摘要:
To perform a stable wire bonding connecting against a multi-level wiring board using an organic material for the interlayer insulating film, a silicon oxide film and organic interlayer insulating films, for example, polyimide layers, and the first to the fourth level wirings, including a nickel layer by plating are formed on the surface of the silicon substrate as a base in order. By adjusting the thickness of the nickel layer in the wiring, the total Vickers hardness from the substrate to each wiring is adjusted to more than 100, respectively.
摘要:
An apparatus for lining up micro-balls in accordance with the present invention includes: ball carrying pallets having a plurality of pits for holding the micro-balls, respectively, on its surface, a pallet holder for holding the ball carrying pallets, a lining-up container defining a sealed chamber in association with the pallet holder hermetically fitted thereto, a storing tank for storing liquid carrier in which micro-balls are dispersed, and applying/collecting device for communicating the storing tank with the lining-up container via a passage to supply the micro-balls together with the liquid carrier from the storing tank to the sealed chamber and return the surplus micro-balls together with the liquid carrier from the sealed chamber to the storing tank.