摘要:
A semiconductor package and a method for fabricating the same are disclosed, which includes: providing a carrier board, forming a plurality of metal bumps on the carrier board, forming a metal layer on the carrier board to encapsulate the metal bumps, having at least one semiconductor chip electrically connected to the metal layer, then forming an encapsulant on the carrier board to encapsulate the semiconductor chip, and next removing the carrier board and the metal bumps to correspondingly form a plurality of grooves on surface of the encapsulant, wherein bottom and sides of the grooves are covered with the metal layer to allow electroconductive components to be effectively positioned in the grooves and completely bonded with the metal layer.
摘要:
A semiconductor package device, a semiconductor package structure, and fabrication methods thereof are provided, which mainly includes disposing a plurality of semiconductor chips on a wafer formed with TSVs (Through Silicon Vias) and electrically connecting the semiconductor chips to the TSVs; encapsulating the semiconductor chips with an encapsulant; and disposing a hard component on the encapsulant. The hard component ensures flatness of the wafer during a solder bump process and provides support to the wafer during a singulation process such that the wafer can firmly lie on a singulation carrier, thereby overcoming the drawbacks of the prior art, namely difficulty in mounting of solder bumps, and difficulty in cutting of the wafer.
摘要:
A multi-chip stack structure and a method for fabricating the same are provided. The method for fabricating a multi-chip stack structure includes disposing a first chip group comprising a plurality of first chips on a chip carrier by using a step-like manner, disposing a second chip on the first chip on top of the first chip group, electrically connecting the first chip group and the second chip to the chip carrier through bonding wires, using film over wire (FOW) to stack a third chip on the first and the second chips with an insulative film provided therebetween, wherein the insulative film covers part of the ends of the bonding wires of the first chip on the top of the first group and at least part of the second chip, and electrically connecting the third chip to the chip carrier through bonding wires, thereby preventing directly disposing on a first chip a second chip having a planar size far smaller than that of the first chip as in the prior art that increases height of the entire structure and increases the wiring bonding difficulty.
摘要:
A sensor semiconductor device and a method for fabricating the same are provided. At least one sensor chip is mounted and electrically connected to a lead frame. A first and a second encapsulation molding processes are sequentially performed to form a transparent encapsulant for encapsulating the sensor chip and a part of the lead frame and to form a light-impervious encapsulant for encapsulating the transparent encapsulant. The transparent encapsulant has a light-pervious portion formed at a position corresponding to and above a sensor zone of the sensor chip. The light-pervious portion is exposed from the light-impervious encapsulant. Light may penetrate the light-pervious portion, without using an additional cover board, thereby reducing manufacturing steps and costs. The above arrangement avoids prior-art problems of poor reliability caused by a porous encapsulant and poor signal reception caused by interference of ambient light entering into a conventional chip only encapsulated by a transparent encapsulant.
摘要:
The present invention proposes a multi-chip semiconductor device having leads and a method for fabricating the same. The method includes the steps of: providing a substrate having a plurality of connection pads disposed on a surface thereof; mounting a plurality of semiconductor chips on the surface of the substrate, and electrically connecting the semiconductor chips to the surface of the substrate; forming an encapsulant on the substrate to encapsulate the semiconductor chips and expose the connection pads to form a package unit; and providing a lead frame having a plurality of leads, and electrically connecting the connection pads exposed from the package unit to the leads of the lead frame to form a multi-chip semiconductor device having leads, thereby forming a multi-chip semiconductor device having leads. By the multi-chip semiconductor device and the method for fabricating the same as proposed in the present invention, problems like poor reliability caused by stress induced by several types of materials in a semiconductor package into which a substrate and leads are integrated, moisture absorption by an encapsulated substrate, and cracks developed as a result of moisture absorption by the substrate can be avoided.
摘要:
A semiconductor package structure and a fabrication method thereof are provided. The fabrication method includes providing a semiconductor chip having an active surface, a inactive surface, and a plurality of bond pads formed on the active surface; coupling one or more substrates to the active surface in such a way that the bond pads are exposed through one or more openings in the one or more substrates and/or gaps between the substrates to electrically connect the bond pads to the substrate; attaching and electrically connecting the semiconductor chip to a leadframe having a plurality of leads; and encapsulating the semiconductor chip, the substrate, and the leadframe with an encapsulant, with at least bottom surfaces of the leads of the leadframe being exposed from the encapsulant. An indented structure is therefore formed on the bottom surface of an inner portion of each of the leads of the leadframe.
摘要:
A semiconductor package device, a semiconductor package structure, and fabrication methods thereof are provided, which mainly includes disposing a plurality of semiconductor chips on a wafer formed with TSVs (Through Silicon Vias) and electrically connecting the semiconductor chips to the TSVs; encapsulating the semiconductor chips with an encapsulant; and disposing a hard component on the encapsulant. The hard component ensures flatness of the wafer during a solder bump process and provides support to the wafer during a singulation process such that the wafer can firmly lie on a singulation carrier, thereby overcoming the drawbacks of the prior art, namely difficulty in mounting of solder bumps, and difficulty in cutting of the wafer.
摘要:
A multi-chip stack structure and a fabrication method thereof are proposed, including providing a leadframe having a die base and a plurality of leads and disposing a first and a second chips on the two surfaces of the die base respectively; disposing the leadframe on a heating block having a cavity in a wire bonding process with the second chip received in the cavity of the heating block; performing a first wire bonding process to electrically connect the first chip to the leads through a plurality of first bonding wires, and forming a bump on one side of the leads connected with the first bonding wires; disposing the leadframe in an upside down manner to the heating block via the bump with the first chip and the first bonding wires received in the cavity of the heating block; and performing a second wire bonding process to electrically connect the second chip to the leads through a plurality of second bonding wires. The bump is used for supporting the leads to a certain height so as to keep the bonding wires from contacting the heating block and eliminate the need of using a second heating block in the second wire bonding process of the prior art, thereby saving time and costs in a fabrication process. Also, as positions where the first and second bonding wires are bonded to the leads on opposite sides of the leadframe correspond with each other, the conventional problems of adversely affected electrical performance and electrical mismatch can be prevented.
摘要:
The invention provides a stackable semiconductor device and a fabrication method thereof, including providing a wafer having a plurality of dies mounted thereon, both the die and the wafer having an active surface and a non-active surface opposing one another respectively, wherein each die has a plurality of solder pads formed on the active surface thereof and a groove formed between adjacent solder pads to form a first metal layer therein that is electrically connected to the solder pads; subsequently thinning the non-active surface of the wafer to where the grooves are located to expose the first metal layer therefrom, and forming a second metal layer on the non-active surface of the wafer for electrically connecting with the first metal layer; and separating the dies to form a plurality of stackable semiconductor devices. Thereby, the first and second metal layers formed on the active surface and the non-active surface of the semiconductor device can be stacked and connected to constitute a multi-die stack structure, thereby increasing integration without increasing the area of the stacked dies. Further, the problems known in the prior art of poor electrical connection, complicated manufacturing process and increased cost as a result of using wire bonding and TSV can be avoided.
摘要:
A semiconductor package with stacked chips and a method for fabricating the same are proposed. The semiconductor package includes a lead frame having a plurality of leads and supporting extensions; at least one preformed package having an active surface, and a non-active surface attached to the supporting extensions of the lead frame; at least one chip mounted on the active surface of the preformed package; a plurality of bonding wires for electrically interconnecting the lead frame, the preformed package and the chip; and an encapsulant for encapsulating the preformed package, the chip, the bonding wire and a portion of the lead frame. The active surface of the preformed package serves for carrying the chip and can be used as a wire jumper, so as to solve a known good die (KGD) problem of a multi-chip module.