Abstract:
Recesses in a semiconductor structure are selectively plated by providing electrical insulating layer over the semiconductor substrate and in the recesses followed by forming a conductive barrier over the insulating layer; providing a plating seed layer over the barrier layer; depositing and patterning a photoresist layer over the plating seed layer; planarizing the insulated horizontal portions by removing the horizontal portions of the seed layer between the recesses; removing the photoresist remaining in the recesses; and then electroplating the patterned seed layer with a conductive metal using the barrier layer to carry the current during the electroplating to thereby only plate on the seed layer.In an alternative process, a barrier film is deposited over recesses in an insulator. Then, relatively thick resists are lithographically defined on the field regions, on top of the barrier film over the recesses. A plating base or seedlayer is deposited, so as to be continuous on the horizontal regions of the recesses in the insulator, but discontinuous on their surround wall. The recesses are then plated using the barrier film without seedlayers at the periphery of the substrate wafers for electrical contact. After electroplating, the resist is removed by lift-off process and exposed barrier film is etched by RIE method or by CMP.Also provided is a semiconductor structure obtained by the above processes.
Abstract:
A semiconductor structure includes a semiconductor substrate, a recess located in at least one major surface of the substrate, an electrical insulating layer located over the at least one major surface and in the recess, a conductive barrier located over the insulating layer and in the recess and over the at least one major surface, a plating seed layer located over the conductive barrier within the recess only, and a conductive metal in the recess only.
Abstract:
A component includes a support structure having first and second spaced-apart and parallel surfaces and a plurality of conductive elements extending in a direction between the first and second surfaces. Each conductive element contains an alloy of a wiring metal selected from the group consisting of copper, aluminum, nickel and chromium, and an additive selected from the group consisting of Gallium, Germanium, Indium, Selenium, Tin, Sulfur, Silver, Phosphorus, and Bismuth. The alloy has a composition that varies with distance in at least one direction across the conductive element. A concentration of the additive is less than or equal to 5% of the total atomic mass of the conductive element, and a resistivity of the conductive element is between 2.5 and 30 micro-ohm-centimeter.
Abstract:
The present invention provides a method and apparatus that plates/deposits a conductive material on a semiconductor substrate and then polishes the same substrate. This is achieved by providing multiple chambers in a single apparatus, where one chamber can be used for plating/depositing the conductive material and another chamber can be used for polishing the semiconductor substrate. The plating/depositing process can be performed using brush plating or electro chemical mechanical deposition and the polishing process can be performed using electropolishing or chemical mechanical polishing. The present invention further provides a method and apparatus for intermittently applying the conductive material to the semiconductor substrate and also intermittently polishing the substrate when such conductive material is not being applied to the substrate. Furthermore, the present invention provides a method and apparatus that plates/deposits and/or polishes a conductive material and improves the electrolyte mass transfer properties on a substrate using a novel anode assembly.
Abstract:
The present invention relates to methods and apparatus for plating a conductive material on a semiconductor substrate by rotating pad or blade type objects in close proximity to the substrate, thereby eliminating/reducing dishing and voids. This is achieved by providing pad or blade type objects mounted on cylindrical anodes or rollers and applying the conductive material to the substrate using the electrolyte solution disposed on or through the pads, or on the blades. In one embodiment of the invention, the pad or blade type objects are mounted on the cylindrical anodes and rotated about a first axis while the workpiece may be stationary or rotate about a second axis, and metal from the electrolyte solution is deposited on the workpiece when a potential difference is applied between the workpiece and the anode. In another embodiment of the present invention, the plating apparatus includes an anode plate spaced apart from the cathode workpiece. Upon application of power to the anode plate and the cathode workpiece, the electrolyte solution disposed in the plating apparatus is used to deposit the conductive material on the workpiece surface using cylindrical rollers having the pad or blade type objects.
Abstract:
An interconnect structure and barrier layer for electrical interconnections is described incorporating a layer of TaN in the hexagonal phase between a first material such as Cu and a second material such as Al, W, and PbSn. A multilayer of TaN in the hexagonal phase and Ta in the alpha phase is also described as a barrier layer. The invention overcomes the problem of Cu diffusion into materials desired to be isolated during temperature anneal at 500° C.
Abstract:
The present invention relates to a method for fabricating high performance chip interconnects and packages by providing methods for depositing a conductive material in cavities of a substrate in a more efficient and time saving manner. This is accomplished by selectively removing portions of a seed layer from a top surface of a substrate and then depositing a conductive material in the cavities of the substrate, where portions of the seed layer remains in the cavities. Another method includes forming an oxide layer on the top surface of the substrate such that the conductive material can be deposited in the cavities without the material being formed on the top surface of the substrate. The present invention also discloses methods for forming multi-level interconnects and the corresponding structures.
Abstract:
Copper is plated onto a substrate by plating a layer of copper onto the substrate to provide a maximum thickness of about 350 nanometers, followed by subjecting the copper coated substrate to an oxygen containing gaseous ambient in order to roughen the copper surface. Next, a second layer of copper is electroplated onto the structure to provide the desired thickness. The texture of the second layer of copper is independent of the underlayer of copper and has a random or at least substantially random texture.
Abstract:
A fixture for supporting a workpiece during electroplating of a metal upon the workpiece in a conductive electroplating bath includes a non-conductive frame member for receiving the workpiece therein. The fixture further includes a current distribution means having a plurality of contacts. The plurality of contacts are disposed inwardly for providing an equally distributed electrical contact with an outer perimeter region of the workpiece. The workpiece is supported between the frame member and the current distribution means. Lastly, a thief electrode is perimetrically disposed about the workpiece and spaced a prescribed distance from the workpiece by a gap region. During plating of a metal upon the workpiece, the gap region between the thief and the workpiece is filled with the conductive electroplating bath. An electroplating apparatus having a fixture for supporting a workpiece during an electroplating process and a method of supporting the workpiece to be electroplated are also disclosed.
Abstract:
High quality factor (Q) spiral and toroidal inductor and transformer are disclosed that are compatible with silicon very large scale integration (VLSI) processing, consume a small IC area, and operate at high frequencies. The spiral inductor has a spiral metal coil deposited in a trench formed in a dielectric layer over a substrate. The metal coil is enclosed in ferromagnetic liner and cap layers, and is connected to an underpass contact through a metal filled via in the dielectric layer. The spiral inductor also includes ferromagnetic cores lines surrounded by the metal spiral coil. A spiral transformer is formed by vertically stacking two spiral inductors, or placing them side-by-side over a ferromagnetic bridge formed below the metal coils and cores lines. The toroidal inductor includes a toroidal metal coil with a core having ferromagnetic strips. The toroidal metal coil is segmented into two coils each having a pair of ports to form a toroidal transformer.