摘要:
A method of forming a printed circuit board or circuit card is provided with a metal layer which serves as a power plane sandwiched between a pair of photoimageable dielectric layers. Photoformed metal filled vias and photoformed plated through holes are in the photopatternable material, and signal circuitry is on the surfaces of each of the dielectric materials and connected to the vias and plated through holes. A border may be around the board or card including a metal layer terminating in from the edge of one of the dielectric layers. A copper foil is provided with clearance holes. First and second layers of photoimageable curable dielectric material is disposed on opposite sides of the copper which are photoimageable material. The patterns are developed on the first and second layers of the photoimageable material to reveal the metal layer through vias. At the clearance holes in the copper, through holes are developed where holes were patterned in both dielectric layers. Thereafter, the surfaces of the photoimageable material, vias and through holes are metalized by copper plating. This is preferably done by protecting the remainder of the circuitry with photoresist and utilizing photolithographic techniques. The photoresist is thereafter removed, leaving a circuit board or card having metalization on both sides, vias extending from both sides to the copper layer in the center, plated through holes connecting the two outer circuitized copper layers.
摘要:
A method of forming a printed circuit card with a metal power plane layer between two photoimageable dielectric layers is provided. Photoformed metal filled vias plated through holes are in the photopatternable material, and signal circuitry is on the surfaces of each of the dielectric materials connected to the vias and plated through holes. A border may be around the card including a metal layer termination in from the edge of one of the dielectric layers. Copper foil with clearance holes is provided. First and second layers of photoimageable curable dielectric material are on opposite sides of the copper. Patterns are developed on the first and second layers of the photoimageable material to reveal the metal layer through vias. Through holes are developed where holes were patterned in both dielectric layers. The surfaces of the photoimageable material, vias and through holes are metallized by copper plating, preferably using photoresist.
摘要:
A method of forming a printed circuit card with a metal power plane layer between two photoimageable dielectric layers is provided. Photoformed metal filled vias and plated through holes are in the photopatternable material, and signal circuitry is on the surfaces of each of the dielectric materials connected to the vias and plated through holes. A border may be around the card including a metal layer terminating in from the edge of one of the dielectric layers. Copper foil with clearance holes is provided. First and second layers of photoimageable curable dielectric material are on opposite sides of the copper. Patterns are developed on the first and second layers of the photoimageable material to reveal the metal layer through vias. Through holes are developed where holes were patterned in both dielectric layers. The surfaces of the photoimageable material, vias and through holes are metallized by copper plating, preferably using photoresist.
摘要:
A method of forming a printed circuit board or circuit card is provided with a metal layer which serves as a power plane sandwiched between a pair of photoimageable dielectric layers. Photoformed metal filled vias and photoformed plated through holes are in the photopatternable material, and signal circuitry is on the surfaces of each of the dielectric materials and connected to the vias and plated through holes. A border may be around the board or card including a metal layer terminating in from the edge of one of the dielectric layers. A copper foil is provided with clearance holes. First and second layers of photoimageable curable dielectric material is disposed on opposite sides of the copper which are photoimageable material. The patterns are developed on the first and second layers of the photoimageable material to reveal the metal layer through vias. At the clearance holes in the copper, through holes are developed where holes were patterned in both dielectric layers. Thereafter, the surfaces of the photoimageable material, vias and through holes are metalized by copper plating. This is preferably done by protecting the remainder of the circuitry with photoresist and utilizing photolithographic techniques. The photoresist is thereafter removed, leaving a circuit board or card having metalization on both sides, vias extending from both sides to the copper layer in the center, plated through holes connecting the two outer circuitized copper layers.
摘要:
A method for forming a plated microvia interconnect. An external dielectric layer (EDL) is mounted on a surface of the substrate and is in direct mechanical contact with a conductive element included in the surface. An opening formed in the EDL exposes the conductive element and creates a microvia in the EDL. A sidewall and bottom wall surface of the microvia is treated to promote copper adhesion to the sidewall and bottom wall surfaces. The sidewall and bottom wall surfaces are plated to form a layer of copper thereon. The layer of copper is in direct mechanical and electrical contact with the conductive element. A wet solder paste deposited on the layer of copper overfills a remaining portion of the microvia. The solder paste is reflowed to form a solder bump in and over the remaining portion of the microvia to form the plated microvia interconnect.
摘要:
A chip carrier structure and method for forming the same having a receptor pad formed therein. The structure comprises a circuitized substrate having a conductive element on the surface, an External Dielectric Layer mounted on the circuitized substrate with an opening positioned above the conductive element to form a microvia. The walls of the microvia are first treated to enhance copper adhesion and then are electroplated to provide a receptor pad. Finally, a solder paste is deposited within the microvia to create a solder deposit or bump.
摘要:
An encapsulated semiconductor chip module. The chip module has the overlying encapsulant adhered directly and integrally to bare portions of the substrate to which the chip is mounted. This configuration enhances the adhesion and inhibits unintended delamination of the encapsulant from the balance of the module. The module is made by patterning anchor openings into the solder mask. The anchor openings expose corresponding portions of the substrate. It is important to locate the anchor openings over parts of the substrate that do not have circuitry on them, that is, on bare portions, so as to avoid corrosion or contamination of the circuit connections.
摘要:
An encapsulated semiconductor chip module. The chip module has the overlying encapsulant adhered directly and integrally to bare portions of the substrate to which the chip is mounted. This configuration enhances the adhesion and inhibits unintended delamination of the encapsulant from the balance of the module. The module is made by patterning anchor openings into the solder mask. The anchor openings expose corresponding portions of the substrate. It is important to locate the anchor openings over parts of the substrate that do not have circuitry on them, that is, on bare portions, so as to avoid corrosion or contamination of the circuit connections.
摘要:
An electronic package and method of making the electronic package is provided. A layer of dielectric material is positioned on a first surface of a substrate which includes a plurality of conductive contacts. At least one through hole is formed in the layer of dielectric material in alignment with at least one of the plurality of conductive contacts. A conductive material is positioned in the at least one through hole substantially filling the through hole. At least one conductive member is positioned on the conductive material in the through hole and in electrical contact with the conductive material. The electronic package improves field operating life of an assembly which includes a semiconductor chip attached to a second surface of the substrate and a printed wiring board attached to the conductive members.
摘要:
An electronic package and method of making the electronic package is provided. A layer of dielectric material is positioned on a first surface of a substrate which includes a plurality of conductive contacts. At least one through hole is formed in the layer of dielectric material in alignment with at least one of the plurality of conductive contacts. A conductive material is positioned in the at least one through hole substantially filling the through hole. At least one conductive member is positioned on the conductive material in the through hole and in electrical contact with the conductive material. The electronic package improves field operating life of an assembly which includes a semiconductor chip attached to a second surface of the substrate and a printed wiring board attached to the conductive members.