摘要:
A substrate unit has a first surface and a corresponding second surface, and a plurality of nodes and at least a die pad are formed on the first surface of the substrate unit. A plurality of external nodes is formed on the second surface of the substrate unit, and the external nodes are electrically connected to the nodes. A multimedia chip has an active surface and a corresponding back surface, and a plurality of bonding pads are formed on the active surface of the multimedia chip. The back surface of the multimedia chip is adhered on the die pad of the substrate unit. A molding compound encapsulates the multimedia chip, the first surface of the substrate unit, and the conductive wires, and exposes the second surface of the substrate unit and the external nodes.
摘要:
A substrate unit has a first surface and a corresponding second surface, and a plurality of nodes and at least a die pad are formed on the first surface of the substrate unit. A plurality of external nodes is formed on the second surface of the substrate unit, and the external nodes are electrically connected to the nodes. A multimedia chip has an active surface and a corresponding back surface, and a plurality of bonding pads are formed on the active surface of the multimedia chip. The back surface of the multimedia chip is adhered on the die pad of the substrate unit. A molding compound encapsulates the multimedia chip, the first surface of the substrate unit, and the conductive wires, and exposes the second surface of the substrate unit and the external nodes.
摘要:
Proposed is a package structure having a micro-electromechanical (MEMS) element, including a chip having a plurality of electrical connecting pads and a MEMS element formed thereon; a lid disposed on the chip for covering the MEMS element; a stud bump disposed on each of the electrical connecting pads; an encapsulant formed on the chip with part of the stud bumps being exposed from the encapsulant; and a metal conductive layer formed on the encapsulant and connected to the stud bumps. The invention is characterized by completing the packaging process on the wafer directly to enable thinner and cheaper package structures to be fabricated within less time. This invention further provides a method for fabricating the package structure as described above.
摘要:
A built-in module for an inverter and having tension control with integrated tension and velocity closed loops, where required tension feedbacks can be obtained by internal calculations of the inverter or feedback signals of a tension sensor. The tension control module is applied to provide a tension control for a winding mechanism which is operated by driving at least one motor. The tension control module firstly builds a tension control to provide a balanced tension to the winding mechanism. Afterward, the tension control module builds a velocity control to provide an accelerated or decelerated adjustment for the winding mechanism. Accordingly, the winding mechanism can stably maintain a tension-balanced operation.
摘要:
A chip scale package structure and a method for fabricating the same are disclosed. The method includes forming metal pads on a predetermined part of a carrier; mounting chips on the carrier, each of the chips having a plurality of conductive bumps soldered to the metal pads; forming an encapsulant on the carrier to encapsulate the chips and the conductive bumps; removing the carrier to expose the metal pads and even the metal pads with a surface of the encapsulant; forming on the encapsulant a plurality of first conductive traces electrically connected to the metal pads; applying a solder mask on the first conductive traces, and forming a plurality of openings on the solder mask to expose a predetermined part of the first conductive traces; forming a plurality of conductive elements on the predetermined part; and cutting the encapsulant to form a plurality of chip scale package structures.
摘要:
A semiconductor device having conductive bumps and a fabrication method thereof are provided. The fabrication method mainly including steps of: providing a semiconductor substrate having a solder pad and a passivation layer formed thereon with a portion of the solder pads exposed from the passivation layer; disposing a first metal layer on the solder pad and a portion of the passivation layer around the solder pad; disposing a covering layer on the first metal layer and the passivation layer, and forming an aperture in the covering layer to expose a portion of the first metal layer, wherein a center of the aperture is deviated from that of the solder pad; deposing a metal pillar on the portion of the first metal layer; and deposing a solder material on an outer surface of the metal pillar for providing a better buffering effect.
摘要:
A semiconductor package with a heat dissipating structure is provided. The heat dissipating structure includes a flat portion, and a plurality of support portions formed at edge corners of the flat portion for supporting the flat portion above a chip mounted on a substrate. The support portions are mounted at predetermined area on the substrate without interfering with arrangement of the chip and bonding wires that electrically connect the chip to the substrate. The support portions are arranged to form a space embraced by adjacent supports and the flat portion, so as to allow the bonding wires to pass through the space to reach area on the substrate outside coverage of the heat dissipating structure; besides, passive components or other electronic components can be mounted on the substrate at area within or outside the coverage of the heat dissipating structure, thereby improving flexibility in component arrangement in the semiconductor package.
摘要:
A semiconductor package and a fabrication method are disclosed. The fabrication method includes applying a sacrificial layer on one surface of a metal carrier, applying an insulation layer on the sacrificial layer, and forming through holes in the sacrificial layer and the insulation layer to expose the metal carrier; forming a conductive metallic layer in each through hole; forming a patterned circuit layer on the insulation layer to be electrically connected to the conductive metallic layer; mounting at least a chip on the insulation layer and electrically connecting the chip to the patterned circuit layer; forming an encapsulant to encapsulate the chip and the patterned circuit layer; and removing the metal carrier and the sacrificial layer to expose the insulation layer and conductive metallic layer to allow the conductive metallic layer to protrude from the insulation layer. In the present invention, the distance between the semiconductor package and the external device is increased, and thermal stress caused by difference between the thermal expansion coefficients is reduced, so as to enhance the reliability of the product.
摘要:
A semiconductor package structure includes: a dielectric layer; a metal layer disposed on the dielectric layer and having a die pad and traces, the traces each including a trace body, a bond pad extending to the periphery of the die pad, and an opposite trace end; metal pillars penetrating the dielectric layer with one ends thereof connecting to the die pad and the trace ends while the other ends thereof protruding from the dielectric layer; a semiconductor chip mounted on the die pad and electrically connected to the bond pads through bonding wires; and an encapsulant covering the semiconductor chip, the bonding wires, the metal layer, and the dielectric layer. The invention is characterized by disposing traces with bond pads close to the die pad to shorten bonding wires and forming metal pillars protruding from the dielectric layer to avoid solder bridging encountered in prior techniques.
摘要:
A semiconductor device and a fabrication method thereof are provided. An opening having at least one slanted side is formed on a substrate. At least one chip and at least one passive component are mounted on the substrate. An encapsulant having a cutaway corner is formed on the substrate to encapsulate the chip and the passive component, wherein the cutaway corner of the encapsulant is spaced apart from the slanted side of the opening by a predetermined distance. A singulation process is performed to cut the encapsulant to form a package with a chamfer. The package is embedded in a lid to form the semiconductor device, wherein a portion of the substrate located between the slanted side of the opening and the cutaway corner of the encapsulant is exposed from the encapsulant to form an exposed portion. The present invention also provides a carrier for the semiconductor device.