摘要:
A method of forming a sidewall spacer on a gate electrode is described. The method includes generating a first plasma from a silicon containing precursor and oxide precursor, and forming a silicon oxy-nitride layer on the sidewall of the gate electrode. The method also includes generating a second plasma from the silicon containing precursor and a nitrogen precursor, and forming a nitride layer on the silicon oxy-nitride layer. The silicon containing precursor can flow continuously between the generation of the first and the second plasmas. Also, a method of forming a sidewall spacer on the side of a gate electrode on a substrate. The method includes forming an oxy-nitride layer on the sidewall, and forming a nitride layer on the oxy-nitride layer, where the substrate wafer is not exposed to air between the formation of the layers.
摘要:
A layer of silicon nitride having a thickness from 0.5 nanometers to 2.4 nanometers is deposited on a substrate. A plasma nitridation process is carried out on the layer. These steps are repeated for a plurality of additional layers of silicon nitride, until a predetermined thickness is attained. Such steps can be used to provide a multilayer silicon nitride dielectric formed on a substrate having an upper surface of dielectric material with Cu and other conductors embedded within, and a plurality of steps. The multilayer silicon nitride dielectric has a plurality of individual layers each having a thickness from 0.5 nanometers to 2.4 nanometers, and the multilayer silicon nitride dielectric conformally covers the steps of the substrate with a conformality of at least seventy percent. A multilayer silicon nitride dielectric, and a multilevel back end of line interconnect wiring structure using same, are also provided.
摘要:
A method of forming a layer on a substrate in a chamber, wherein the substrate has at least one formed feature across its surface, is provided. The method includes exposing the substrate to a silicon-containing precursor in the presence of a plasma to deposit a layer, treating the deposited layer with a plasma, and repeating the exposing and treating until a desired thickness of the layer is obtained. The plasma may be generated from an oxygen-containing gas.
摘要:
Methods and apparatus are provided for processing a substrate with a bilayer barrier layer. In one aspect, the invention provides a method for processing a substrate including depositing a nitrogen containing barrier layer on a substrate surface and then depositing a nitrogen free barrier layer thereon. The barrier layer may be deposited over dielectric materials, conductive materials, or both. The bilayer barrier layer may also be used as an etch stop, an anti-reflective coating, or a passivation layer.
摘要:
A method and apparatus for treating a substrate is provided. A porous dielectric layer is formed on the substrate. In some embodiments, the dielectric may be capped by a dense dielectric layer. The dielectric layers are patterned, and a dense dielectric layer deposited conformally over the substrate. The dense conformal dielectric layer seals the pores of the porous dielectric layer against contact with species that may infiltrate the pores. The portion of the dense conformal pore-sealing dielectric layer covering the field region and bottom portions of the pattern openings is removed by directional selective etch.
摘要:
A silicon dioxide layer is deposited onto a substrate using a process gas comprising BDEAS and an oxygen-containing gas such as ozone. The silicon dioxide layer can be part of an etch-resistant stack that includes a resist layer. In another version, the silicon dioxide layer is deposited into through holes to form an oxide liner for through-silicon vias.
摘要:
High tensile stress in a deposited layer, such as a silicon nitride layer, may be achieved utilizing one or more techniques employed either alone or in combination. In one embodiment, a silicon nitride film having high tensile stress may be formed by depositing the silicon nitride film in the presence of a porogen. The deposited silicon nitride film may be exposed to at least one treatment selected from a plasma or ultraviolet radiation to liberate the porogen. The silicon nitride film may be densified such that a pore resulting from liberation of the porogen is reduced in size, and Si—N bonds in the silicon nitride film are strained to impart a tensile stress in the silicon nitride film. In another embodiment, tensile stress in a silicon nitride film may be enhanced by depositing a silicon nitride film in the presence of a nitrogen-containing plasma at a temperature of less than about 400° C., and exposing the deposited silicon nitride film to ultraviolet radiation.
摘要:
A process flow integration scheme employs one or more techniques to control stress in a semiconductor device formed thereby. In accordance with one embodiment, cumulative stress contributed by RTP of a nitride spacer and polysilicon gate, and subsequent deposition of a high stress etch stop layer, enhance strain and improve device performance. Germanium may be deposited or implanted into the gate structure in order to facilitate stress control.
摘要:
Stress of a silicon nitride layer may be enhanced by deposition at higher temperatures. Employing an apparatus that allows heating of a substrate to substantially greater than 400° C. (for example a heater made from ceramic rather than aluminum), the silicon nitride film as-deposited may exhibit enhanced stress allowing for improved performance of the underlying MOS transistor device. In accordance with alternative embodiments, a deposited silicon nitride film is exposed to curing with ultraviolet (UV) radiation at an elevated temperature, thereby helping remove hydrogen from the film and increasing film stress. In accordance with still other embodiments, a silicon nitride film is formed utilizing an integrated process employing a number of deposition/curing cycles to preserve integrity of the film at the sharp corner of the underlying raised feature. Adhesion between successive layers may be promoted by inclusion of a post-UV cure plasma treatment in each cycle.
摘要:
A method for the removal of copper oxide from a copper and dielectric containing structure of a semiconductor chip is provided. The copper and dielectric containing structure may be planarized by chemical mechanical planarization (CMP) and treated by the method to remove copper oxide and CMP residues. Annealing in a hydrogen (H2) gas and ultraviolet (UV) environment removes copper oxide, and a pulsed ammonia plasma removes CMP residues.