摘要:
An optical apparatus including an optical substrate having an embedded waveguide and an optical device adapted to receive light transmitted from an end of the waveguide. The optical apparatus includes a coupling structure for coupling the optical device to the substrate. The coupling structure has a thin metallic layer with an aperture. At least a portion of the optical device is disposed in the aperture. A method for making an optical apparatus comprising forming an optical substrate having a waveguide embedded therein; depositing a metal layer over an end of the waveguide; and depositing a polymeric layer over the metal layer. An aperture is formed in the metal layer and in the polymeric layer by removing a portion of the metal layer and a portion of the polymeric layer disposed over the end of the waveguide. The method for making an optical apparatus also comprises inserting at least a portion of an optical device within the aperture so that the optical device is positioned to receive light from the first end of the waveguide.
摘要:
An optoreflective structure for reflecting an optical signal following a path defined by an optical waveguide comprising a first cladding layer having a first planar cladding surface; a waveguide disposed on the first cladding layer; and a second cladding layer disposed on the waveguide and having a second planar cladding surface. The first cladding layer, the second cladding layer and the waveguide terminate in a generally dove-tailed structure having a beveled planar surface. An optoreflector is disposed on the beveled planar surface for a changing direction of an optical signal passing through the waveguide. Methods of producing the optoreflective structure are disclosed.
摘要:
A method for transferring devices to a device substrate is disclosed. In one embodiment, the method includes providing an array of devices on a carrier substrate having a generally horizontal surface, where the array comprises multiple device pluralities. The method includes tilting the device pluralities with respect to the generally horizontal surface of the carrier substrate. Each tilted device plurality is preferably in substantially the same pattern, and each tilted device plurality is placed on device regions on respective device substrates.
摘要:
Improved methods and articles used to fabricate flexible circuit structures are disclosed. The methods include depositing a release layer or a dielectric film on a substrate, and then forming a conductive laminate on the release layer or the dielectric film. The conductive laminate may be easily separated by the substrate to eventually form a flexible circuit structure.
摘要:
Improved methods and articles used to fabricate flexible circuit structures are disclosed. The methods include depositing a release layer or a dielectric film on a substrate, and then forming a conductive laminate on the release layer or the dielectric film. The conductive laminate may be easily separated by the substrate to eventually form a flexible circuit structure. Plasma may be used to treat a surface of the release layer or the dielectric film to produce a plasma-treated surface to lower the peel strength of any film or layer bound to the plasma-treated surface.
摘要:
A portion of a conductive layer (310, 910) provides a capacitor electrode (310.0, 910.0). Dielectric trenches (410, 414, 510) are formed in the conductive layer to insulate the capacitor electrode from those portions of the conductive layer which are used for conductive paths passing through the electrode but insulated from the electrode. Capacitor dielectric (320) can be formed by anodizing tantalum while a nickel layer (314) protects an underlying copper (310) from the anodizing solution. This protection allows the tantalum layer to be made thin to obtain large capacitance. Chemical mechanical polishing of a layer (610) is made faster, and hence possibly less expensive, by first patterning the layer photolithographically to form, and/or increase in height, upward protrusions of this layer.
摘要:
A portion of a conductive layer (310, 910) provides a capacitor electrode (310.0, 910.0). Dielectric trenches (410, 414, 510) are formed in the conductive layer to insulate the capacitor electrode from those portions of the conductive layer which are used for conductive paths passing through the electrode but insulated from the electrode. Capacitor dielectric (320) can be formed by anodizing tantalum while a nickel layer (314) protects an underlying copper (310) from the anodizing solution. This protection allows the tantalum layer to be made thin to obtain large capacitance. Chemical mechanical polishing of a layer (610) is made faster, and hence possibly less expensive, by first patterning the layer photolithographically to form, and/or increase in height, upward protrusions of this layer.
摘要:
A hybrid integration process for fabrication of an optical cross-connect switching apparatus. The switching element is based on the deflection of light beam in electro-optic materials by applying electric field across electrodes of an appropriate configuration. The integration process includes fabrication of a substrate (e.g. silicon substrate) with 2D imaging optics from polymeric materials (or silica), fabrication of the light deflecting element, and assembly of the deflecting element on the substrate with imaging optics. The fabrication of the light deflecting element includes fabrication of a LN (lithium niobate) block. The LN block assembled in an optical switching apparatus includes a two-dimensional waveguide formed on a surface of the LN block and an electrode on a surface of the LN block.