Abstract:
The present invention relates to an acupressure tool, and in particular, an acupressure tool in which one end of a rod-shaped acupressure body is bent toward one direction to form a first pressing part so that the acupuncture point located deeply in a human body can be easily stimulated even with a small force, and the first pressing part is formed to gradually decrease in width toward a tip, and is able to press an acupuncture point through the first pressing part on the principle of a lever.
Abstract:
A stack package includes a core layer having a first surface and a second surface, and including first circuit wiring lines; a first semiconductor device disposed on the second surface of the core layer; a first resin layer formed on the second surface of the core layer to cover the first semiconductor device; second circuit wiring lines formed on the first resin layer and electrically connected with the first semiconductor device; a second semiconductor device disposed over the first resin layer including the second circuit wiring lines and electrically connected with the second circuit wiring lines; a second resin layer formed on the second circuit wiring lines and the first resin layer to cover the second semiconductor device; and a plurality of via patterns formed to pass through the first resin layer and the core layer and electrically connecting the first circuit wiring lines and the second circuit wiring lines.
Abstract:
A semiconductor package includes a semiconductor chip having a first region defined at a center portion of a first surface of the semiconductor chip, and having second and third regions defined on both sides of the first region, respectively. Bonding pads are disposed in the first region and a substrate having a substrate body is disposed in the second region of the semiconductor chip. The substrate includes an extension portion projecting away from the semiconductor chip. The substrate also includes circuit patterns disposed on the substrate body having a first ends placed adjacent to the bonding pads and second ends placed on the extension portion. Connection members electrically connect the first ends of the circuit patterns and the bonding pads.
Abstract:
The substrate for a semiconductor package includes a substrate body having a first surface and a second surface opposite to the first surface. Connection pads are formed near an edge of the first surface. Signal lines having conductive vias and first, second, and third line parts are formed. The first line parts are formed on the first surface and are connected to the connection pads and the conductive vias, which pass through the substrate body. The second line parts are formed on the first surface and connect to the conductive vias. The third line parts are formed on the second surface and connect to the conductive vias. The second and third line parts are formed to have substantially the same length. The semiconductor package utilizes the above substrate for processing data at a high speed.
Abstract:
A bump includes a metal pillar formed over a structural body; and a diffusion barrier member formed to cover at least a portion of a side surface of the metal pillar.
Abstract:
A semiconductor device includes a semiconductor substrate having an upper surface, a lower surface, a first side and a second side, wherein the lower surface has a slope so that the first side is thicker than the second side, and a circuit pattern including a bonding pad on the upper surface of the semiconductor substrate.
Abstract:
A stacked semiconductor chip includes a main substrate supporting a semiconductor chip module, wherein the semiconductor module comprises at least two sub semiconductor chip modules each having a sub substrate in which a first semiconductor chip is embedded and at least two second semiconductor chips are stacked on the sub substrate.
Abstract:
The substrate for a semiconductor package includes a substrate body having a first surface and a second surface opposite to the first surface. Connection pads are formed near an edge of the first surface. Signal lines having conductive vias and first, second, and third line parts are formed. The first line parts are formed on the first surface and are connected to the connection pads and the conductive vias, which pass through the substrate body. The second line parts are formed on the first surface and connect to the conductive vias. The third line parts are formed on the second surface and connect to the conductive vias. The second and third line parts are formed to have substantially the same length. The semiconductor package utilizes the above substrate for processing data at a high speed.
Abstract:
A bump for a semiconductor package includes: a first bump formed on a semiconductor chip and having at least two land parts and a connection part which connects the land parts and has a line width smaller than the land parts; and a second bump formed on the first bump and projecting on the land parts of the first bump in shapes of a hemisphere.
Abstract:
A semiconductor package includes a semiconductor chip having a first surface, on which an electrode pad is arranged, and a second surface which is the other side of the semiconductor chip, an insulation member formed on the second surface of the semiconductor chip, and comprising a via hole at a position spaced apart from the semiconductor chip, and a conductive filler filling the via hole.