Abstract:
A transistor with stable electrical characteristics. A semiconductor device includes a first insulator over a substrate, a second insulator over the first insulator, an oxide semiconductor in contact with at least part of a top surface of the second insulator, a third insulator in contact with at least part of a top surface of the oxide semiconductor, a first conductor and a second conductor electrically connected to the oxide semiconductor, a fourth insulator over the third insulator, a third conductor which is over the fourth insulator and at least part of which is between the first conductor and the second conductor, and a fifth insulator over the third conductor. The first insulator contains a halogen element.
Abstract:
A transistor having high field-effect mobility is provided. A transistor having stable electrical characteristics is provided. A transistor having small current in an off state (in a non-conductive state) is provided. A semiconductor device including such a transistor is provided. A first electrode is formed over a substrate, a first insulating layer is formed adjacent to a side surface of the first electrode, and a second insulating layer is formed to cover the first insulating layer and be in contact with at least part of a surface of the first electrode. The surface of the first electrode is formed of a conductive material that does not easily transmit an impurity element. The second insulating layer is formed of an insulating material that does not easily transmit an impurity element. An oxide semiconductor layer is formed over the first electrode with a third insulating layer provided therebetween.
Abstract:
A nitride insulating film which prevents diffusion of hydrogen into an oxide semiconductor film in a transistor including an oxide semiconductor is provided. Further, a semiconductor device which has favorable electrical characteristics by using a transistor including a silicon semiconductor and a transistor including an oxide semiconductor is provided. Two nitride insulating films having different functions are provided between the transistor including a silicon semiconductor and the transistor including an oxide semiconductor. Specifically, a first nitride insulating film which contains hydrogen is provided over the transistor including a silicon semiconductor, and a second nitride insulating film which has a lower hydrogen content than the first nitride insulating film and functions as a barrier film against hydrogen is provided between the first nitride insulating film and the transistor including an oxide semiconductor.
Abstract:
A change in electrical characteristics is suppressed and reliability in a semiconductor device using a transistor including an oxide semiconductor is improved. The semiconductor device includes an oxide semiconductor film over an insulating surface, an antioxidant film over the insulating surface and the oxide semiconductor film, a pair of electrodes in contact with the antioxidant film, a gate insulating film over the pair of electrodes, and a gate electrode which is over the gate insulating film and overlaps with the oxide semiconductor film. In the antioxidant film, a width of a region overlapping with the pair of electrodes is longer than a width of a region not overlapping with the pair of electrodes.
Abstract:
A semiconductor device in which the threshold is adjusted is provided. In a transistor including a semiconductor, a source or drain electrode electrically connected to the semiconductor, a gate electrode, and an electron trap layer between the gate electrode and the semiconductor, the electron trap layer includes crystallized hafnium oxide. The crystallized hafnium oxide is deposited by a sputtering method using hafnium oxide as a target. When the substrate temperature is Tsub (° C.) and the proportion of oxygen in an atmosphere is P (%) in the sputtering method, P≧45−0.15×Tsub is satisfied. The crystallized hafnium oxide has excellent electron trapping properties. By the trap of an appropriate number of electrons, the threshold of the semiconductor device can be adjusted.
Abstract:
A semiconductor device in which an increase in oxygen vacancies in an oxide semiconductor layer can be suppressed is provided. A semiconductor device with favorable electrical characteristics is provided. A highly reliable semiconductor device is provided. A semiconductor device includes an oxide semiconductor layer in a channel formation region, and by the use of an oxide insulating film below and in contact with the oxide semiconductor layer and a gate insulating film over and in contact with the oxide semiconductor layer, oxygen of the oxide insulating film or the gate insulating film is supplied to the oxide semiconductor layer. Further, a conductive nitride is used for metal films of a source electrode layer, a drain electrode layer, and a gate electrode layer, whereby diffusion of oxygen to the metal films is suppressed.
Abstract:
A semiconductor device includes a first conductor, a second conductor, a first insulator, a second insulator, a third insulator, a semiconductor, and an electron trap layer. The semiconductor includes a channel formation region. The electron trap layer overlaps with the channel formation region with the second insulator interposed therebetween. The first conductor overlaps with the channel formation region with the first insulator interposed therebetween. The second conductor overlaps with the electron trap layer with the third insulator interposed therebetween. The second conductor does not overlap with the channel formation region.
Abstract:
A method for forming an amorphous semiconductor which contains an impurity element and has low resistivity and a method for manufacturing a semiconductor device with excellent electrical characteristics with high yield are provided. In the method for forming an amorphous semiconductor containing an impurity element, which utilizes a plasma CVD method, pulse-modulated discharge inception voltage is applied to electrodes under the pressure and electrode distance with which the minimum discharge inception voltage according to Paschen's Law can be obtained, whereby the amorphous semiconductor which contains an impurity element and has low resistivity is formed.
Abstract:
Stable electrical characteristics and high reliability are provided for a miniaturized semiconductor device including an oxide semiconductor, and the semiconductor device is manufactured. The semiconductor device includes a base insulating layer; an oxide stack which is over the base insulating layer and includes an oxide semiconductor layer; a source electrode layer and a drain electrode layer over the oxide stack; a gate insulating layer over the oxide stack, the source electrode layer, and the drain electrode layer; a gate electrode layer over the gate insulating layer; and an interlayer insulating layer over the gate electrode layer. In the semiconductor device, the defect density in the oxide semiconductor layer is reduced.
Abstract:
A semiconductor device includes a first conductor, a second conductor, a first semiconductor, a second semiconductor, a third semiconductor, and an insulator. The second semiconductor is in contact with an upper surface of the first semiconductor. The first conductor overlaps with the second semiconductor. The insulator is located between the first conductor and the first semiconductor. The second conductor is in contact with an upper surface of the second semiconductor. The third semiconductor is in contact with the upper surface of the first semiconductor, the upper surface of the second semiconductor, and an upper surface of the second conductor.