Abstract:
A method for making a supported tantalum oxide catalyst precursor or catalyst with controlled Ta distribution and the resulting supported Ta catalyst. In an embodiment, the method comprises selecting a Ta-precursor with appropriate reactivity with the surface hydroxyls of the solid oxide support material to give a desired Ta distribution in the catalyst precursor or catalyst. In an embodiment the method comprises controlling the number of surface hydroxyls available on the support material to react with the Ta-precursor by thermal methods, such as calcination, to achieve the desired Ta distribution.
Abstract:
Improved methods of oxidative dehydrogenation (ODH) of short chain alkanes or ethylbenzene to the corresponding olefins, and improved methods of oxidative coupling of methane (OCM) to ethylene and/or ethane, are disclosed. The disclosed methods use boron- or nitride-containing catalysts, and result in improved selectivity and/or byproduct profiles than methods using conventional ODH or OCM catalysts.
Abstract:
The present disclosure provides an anatase-type niobium oxynitride having an anatase-type crystal structure and represented by the chemical formula NbON. The present disclosure also provides a semiconductor structure (100) including: a substrate (110) having at least one principal surface composed of a perovskite-type compound having a perovskite-type crystal structure; and a niobium oxynitride (for example, an anatase-type niobium oxynitride film (120)) grown on the one principal surface of the substrate (110), the niobium oxynitride having an anatase-type crystal structure and being represented by the chemical formula NbON.
Abstract:
A method for manufacturing a photosemiconductor according to the present disclosure includes: forming an oxide on a base material, the oxide containing at least one kind of transition metal; and preparing a photosemiconductor containing the transition metal and a nitrogen element from the oxide by subjecting the oxide to a treatment with a plasma of a nitrogen-containing gas which is generated at a frequency in a VHF range under a pressure lower than atmospheric pressure.
Abstract:
A photocatalytic functional film has a structure of a substrate, a barrier layer and a photocatalytic layer stacked one on another. The barrier layer is an amorphous TiO2 film, the photocatalyst layer comprises an amorphous TiO2 film, and particles of visible light responsive photocatalytic material formed on the surface of the amorphous TiO2 film. A method for producing a photocatalytic functional film includes: adding an alcohol solvent and an acid to a titanium precursor to obtain a TiO2 amorphous sol by dehydration and de-alcoholization reaction; applying and drying the TiO2 amorphous sol on a substrate to form a barrier layer; and applying and drying a composition formed by mixing particles of visible light responsive photocatalyst material with the TiO2 amorphous sol on the barrier layer, to form a photocatalyst layer.
Abstract:
Provided is a doped tin oxide that can be used as a chemical plating promoter in a method for selectively metallizing a surface of an insulating substrate. Also provided are a polymer composition that includes the doped tin oxide, a polymer molded body, an ink composition, and a method for selectively metallizing a surface of an insulating substrate. The doped tin oxide has a light color, and does not interfere with the color of the substrate while presetting thereof. The doped tin oxide has a strong ability of promoting chemical plating. Using the disclosed doped tin oxide as a chemical plating promoter, a continuous metal layer can be formed with a high plating speed, together with enhanced adhesivity between the metal layer and the insulating substrate.
Abstract:
A method for preparing a porous inorganic material by at least: a) reaction of a mixture of one precursor of the oxide of a metal X in solution and a precursor of the oxide of a metal Y at a temperature of between 30 and 70° C., X and Y being, independently aluminum, cobalt, indium, molybdenum, nickel, silicon, titanium, zirconium, zinc, iron, copper, manganese, gallium, germanium, phosphorus, boron, vanadium, tin, lead, hafnium, niobium, yttrium, cerium, gadolinium, tantalum, tungsten, antimony, europium or neodymium; b) mixing of the mixture obtained at the end of a) at a temperature of between 80 and 150° C., the mixing period being adjusted so as to obtain a paste that exhibits a fire loss of between 20% by weight and 90% by weight; c) shaping of the porous inorganic material; a) to c) being performed within an extruder.
Abstract:
A catalyst comprising a platinum group metal (group 10) supported on a carrier, said carrier comprising a silica core and a precipitate layer of comprising a metal oxide, sulfate or phosphate on said core; said catalyst also comprising a rhodium group metal (group 9) supported on said carrier.
Abstract:
A porous metal-oxide composite particle suitable for use as a oxygen reduction reaction or oxygen evolution reaction catalyst and sacrificial support based methods for making the same.
Abstract:
The present invention relates to a catalyst for preparation of chlorine by catalytic gas phase oxidation of hydrogen chloride with oxygen, in which the catalyst comprises at least tin dioxide as a support material and at least one ruthenium-containing compound as a catalytically active material, and comprises, as an additional secondary constituent, a compound of an element or an element selected from the group of: Nb, V, Ta, Cr, Mo, Au, In, Sc, Y and lanthanoids, especially La and Ce.