Abstract:
A semiconductor chip assembly includes a semiconductor chip that includes a conductive pad, a conductive trace that includes a routing line and a metal pillar, a connection joint that electrically connects the routing line and the pad, and an encapsulant. The chip and the metal pillar are embedded in the encapsulant, the routing line extends laterally beyond the metal pillar towards the chip, and the metal pillar is welded to the routing line and includes stacked metal balls that are welded together.
Abstract:
A method of making a semiconductor chip assembly includes providing a metal base, a routing line, a metal containment wall and a solder layer in which the metal containment wall includes a cavity and the solder terminal contacts the metal containment wall in the cavity, mechanically attaching a semiconductor chip to the routing line, forming a connection joint that electrically connects the routing line and the pad, etching the metal base to reduce contact area between the metal base and the routing line and between the metal base and the metal containment wall, and providing a solder terminal that includes the solder layer.
Abstract:
A semiconductor chip assembly includes a semiconductor chip that includes a conductive pad, a conductive trace that includes a routing line, a bumped terminal and a filler, a connection joint that electrically connects the routing line and the pad, and an encapsulant. The routing line is adjacent to the bumped terminal and extends laterally beyond the bumped terminal and the filler, and the filler contacts the bumped terminal in a cavity that extends through the bumped terminal.
Abstract:
A semiconductor chip assembly includes a semiconductor chip that includes a conductive pad, a conductive trace that includes a routing line, a metal containment wall and a solder terminal, and a connection joint that electrically connects the routing line and the pad. The metal containment wall includes a cavity, and the solder terminal contacts the metal containment wall in the cavity and is spaced from the routing line.
Abstract:
A method of making a semiconductor chip assembly includes providing a metal base, a routing line and a pillar etch mask that extends into a trench, mechanically attaching a semiconductor chip to the routing line, forming a connection joint that electrically connects the routing line and the pad, etching the metal base to form a metal pillar with a tip adjacent to the trench, and providing a contact terminal that includes the pillar etch mask and is a permanent part of the assembly.
Abstract:
A method of making a semiconductor chip assembly includes providing a semiconductor chip, a metal base, an insulative base and a routing line, wherein the chip includes a conductive pad, the metal base is disposed on a side of the insulative base that faces away from the chip, and the routing line is disposed on a side of the insulative base that faces towards the chip, then etching the metal base, forming an interconnect in a via, and forming a connection joint in an opening, wherein the via extends through the insulative base, the opening extends through the insulative base, the interconnect extends through the insulative base and is electrically connected to the routing line, and the connection joint electrically connects the routing line and the pad. Preferably, the opening extends through an insulative adhesive that attaches the routing line to the chip.
Abstract:
A semiconductor chip assembly includes a semiconductor chip that includes a conductive pad, a conductive trace that includes a routing line, a bumped terminal and a metal filler, a connection joint that electrically connects the routing line and the pad, and an encapsulant. The routing line is contiguous with and integral with the bumped terminal and extends laterally beyond the bumped terminal and the metal filler, and the metal filler contacts the bumped terminal in a cavity that extends through the bumped terminal.
Abstract:
A semiconductor chip assembly includes a semiconductor chip that includes a conductive pad, a conductive trace that includes a routing line and a metal particle, a connection joint that electrically connects the routing line and the pad, and an encapsulant. The routing line extends laterally beyond the metal particle towards the chip, and the chip and the metal particle are embedded in the encapsulant and extend vertically beyond the routing line in the same direction.
Abstract:
A method of making a semiconductor chip assembly includes providing a semiconductor chip that includes a conductive pad, providing a conductive trace and a metal base, wherein the conductive trace includes a routing line and a contact terminal, the routing line is disposed outside the metal base, the contact terminal extends from the routing line through the metal base, the contact terminal includes a plated metal that contacts and extends through the metal base, the plated metal forms a peripheral sidewall portion of the contact terminal, and the plated metal surrounds a central surface area without extending into the central surface area, then mechanically attaching the chip to the conductive trace, removing a portion of the metal base that contacts the plated metal, and forming a connection joint that contacts and electrically connects the conductive trace and the pad.
Abstract:
A method of connecting a conductive trace to a semiconductor chip includes providing a semiconductor chip with upper and lower surfaces, wherein the upper surface includes a conductive pad, providing a conductive trace, then disposing an insulative adhesive between the conductive trace and the chip, thereby mechanically attaching the conductive trace to the chip such that the conductive trace overlaps the pad, the adhesive contacts and is sandwiched between the conductive trace and the pad, and the conductive trace and the pad are electrically isolated from one another, then removing the adhesive between the conductive trace and the pad, and then forming a connection joint that contacts and electrically connects the conductive trace and the pad. Preferably, the adhesive is removed by laser ablation then plasma etching.