Abstract:
Low inductance capacitors include electrodes that are arranged among dielectric layers and oriented such that the electrodes are substantially perpendicular to a mounting surface. Vertical electrodes are exposed along a device periphery to determine where termination lands are formed, defining a narrow and controlled spacing between the lands that is intended to reduce the current loop area, thus reducing the component inductance. Further reduction in current loop area and thus component equivalent series inductance (ESL) may be provided by interdigitated terminations. Terminations may be formed by various electroless plating techniques, and may be directly soldered to circuit board pads. Terminations may also be located on “ends” of the capacitors to enable electrical testing or to control solder fillet size and shape. Two-terminal devices may be formed as well as devices with multiple terminations on a given bottom (mounting) surface of the device. Terminations may also be formed on the top surface (opposite a designated mounting surface) and may be a mirror image, reverse-mirror image, or different shape relative to the bottom surface.
Abstract:
In some embodiments, a micro-via structure design for high performance integrated circuits is presented. In this regard, an integrated circuit chip package is introduced having a dielectric layer, a plated throughhole in the dielectric layer, and a micro-via coupled with the plated throughhole, wherein the micro-via forms a path around an axis. Other embodiments are also disclosed and claimed.
Abstract:
A photodetector module that can achieve impedance matching and power saving. A photodetector (11) and an amplifier (12) for amplifying an electric signal from the photodetector (11) are mounted on a stem (14). A dielectric plate (18) is arranged between the stem (14) and a flexible substrate (20). To transfer an electric signal from the amplifier (12) to the substrate (20), a lead pin (15d) is provided to pass through the stem (14) and the dielectric plate (18). The output of the amplifier (12) includes a capacitance component, and the output impedance of the amplifier (12) is higher than the impedance that matches with the substrate (20). Further, the thickness d of the dielectric plate (18) is such that the inductance component of the lead pin (15d) includes an inductance component that is inductive, which cancels the capacitance component of the amplifier, and impedance matching with the substrate (20) can be achieved.
Abstract:
A method and apparatus that provides improved loop inductance of decoupling capacitors. Vias are moved close to the pads and close to each other. Instead of placing power and ground vias on opposite sides of the capacitor, these vias are moved around to the same side of the capacitor and are placed as close to each other as manufacturing tolerances will allow. For designs using standard two-terminal surface mount capacitors, two vias per capacitor, and standard manufacturing procedures (no vias inside pads, for example), the lowest possible loop inductance of the capacitor's connections to the printed circuit board planes is provided. This results in the lowest effective capacitor series input inductance.
Abstract:
A circuit board with mounting pads is described for improving the frequency response of routing traces. The present invention is used to etch an etching hole on ground layer corresponding to the surface-mounted devices (SMD) on a routing layer and therefore the parasitic effect from the stray capacitor is reduced, resulting in eliminating the parasitic effect in high-frequency and raising the quality of the PCB as well.
Abstract:
A semiconductor package that has a superior high frequency characteristics and that can obtain a large area for an internal wiring pattern is provided. According to the present invention, a semiconductor package includes: a multilayer printed wiring board 12, and an IC chip, mounted on the obverse face of the multilayer wiring board 12, and multiple bump terminals 16, mounted on the reverse face. Each bump terminal 16 includes an insulating core 42 having a flat face 40 and a conductive coating deposited on all external surfaces except that of the flat face 40. The end faces of the conductive coatings 44 appear like rings around the insulating cores 42, and are soldered to annular connection pads 52 formed on the reverse face of the multilayer printed wiring board 12. Vias 36 are arranged immediately above the bump terminals 16, and clearance holes 34, the diameter of which is smaller than the diameter of the bump terminals 16, are formed in internal wiring patterns 28 and 30 to permit the passage of the vias 36.
Abstract:
Low inductance capacitors include electrodes that are arranged among dielectric layers and oriented such that the electrodes are substantially perpendicular to a mounting surface. Vertical electrodes are exposed along a device periphery to determine where termination lands are formed, defining a narrow and controlled spacing between the lands that is intended to reduce the current loop area, thus reducing the component inductance. Further reduction in current loop area and thus component equivalent series inductance (ESL) may be provided by interdigitated terminations. Terminations may be formed by various electroless plating techniques, and may be directly soldered to circuit board pads. Terminations may also be located on “ends” of the capacitors to enable electrical testing or to control solder fillet size and shape. Two-terminal devices may be formed as well as devices with multiple terminations on a given bottom (mounting) surface of the device. Terminations may also be formed on the top surface (opposite a designated mounting surface) and may be a mirror image, reverse-mirror image, or different shape relative to the bottom surface.
Abstract:
A design rule for a printed wiring board is provided. A conductive layer and a pad are separate from each other in a distance defined by the design rule, which sufficiently prevents the capacitance coupling between the conductive layer and the pad.
Abstract:
Shielded circuit pad is provided where the parasitic capacitance is tuned out by the inclusion of a shunt transmission line stub which reduces the substrate induced loss in millimeter-wave applications. The circuit pad is located on the substrate, with a shield located beneath the circuit pad, and the shunt transmission line stub attached to the circuit pad. Accordingly, controlled impedance is obtained for millimeter-wave applications. The spacing between the circuit pad and the shield may then be minimized.