Abstract:
A flex-rigid wiring board includes a first rigid substrate, a second rigid substrate arranged at a distance from the first rigid substrate to provide a space between the first and second rigid substrates and a flexible substrate. The flexible substrate includes a first tip portion connected to the first rigid substrate, and a second tip portion connected to the second rigid substrate such that the first and second rigid substrates are connected to each other by way of the flexible substrate. At least one bending portion is formed between the first and second tip portions of the flexible substrate, each of the at least one bending portions is provided in the space between the first and second rigid substrates.
Abstract:
A wiring board and method of forming a wiring board including a first substrate, a second substrate having a smaller mounting area than a mounting area of the first substrate, and a base substrate laminated between the first substrate and the second substrate, such that the first substrate extends beyond an edge of the second substrate. An IVH (Interstitial Via Hole) or through hole penetrates the base substrate and vias are formed in at least one of the first substrate or the second substrate.
Abstract:
A wiring board and a method of forming a wiring board including a first substrate, a second substrate having a smaller mounting area than a mounting area of the first substrate, and a base substrate laminated between the first substrate and the second substrate such that the first substrate extends beyond an edge of the second substrate. An IVH (Interstitial Via Hole) penetrates the base substrate.
Abstract:
A flex-rigid wiring board includes a flexible board including a flexible substrate and a conductor pattern formed over the flexible substrate, a non-flexible substrate disposed adjacent to the flexible board, an insulating layer covering the flexible board and the non-flexible substrate and exposing one or more portions of the flexible board, a conductor pattern formed on the insulating layer, and a plating layer connecting the conductor pattern of the flexible board and the conductor pattern on the insulating layer.
Abstract:
A multilayer printed wiring board comprises insulating layers and conductor layers being stacked alternately on each other. The conductor layers are electrically connected to each other through viaholes formed in the insulating layers. Each of the viaholes is formed to bulge in a direction generally orthogonal to the direction of thickness of the insulating layer. The multilayer printed wiring board is to have electronic components such as a capacitor, IC and the like mounted on the surface layer thereof.
Abstract:
This invention provides a multilayer printed wiring board in which electric connectivity and functionality are obtained by improving reliability and particularly, reliability to the drop test can be improved. No corrosion resistant layer is formed on a solder pad 60B on which a component is to be mounted so as to obtain flexibility. Thus, if an impact is received from outside when a related product is dropped, the impact can be buffered so as to protect any mounted component from being removed. On the other hand, land 60A in which the corrosion resistant layer is formed is unlikely to occur contact failure even if a carbon pillar constituting an operation key makes repeated contacts.
Abstract:
A method for manufacturing a multilayered printed circuit board including forming a first insulating resin substrate having a metal layer substantially corresponding to dimensions of a semiconductor device, forming a second insulating resin substrate, forming a recess extending to the metal layer of the first insulating resin substrate such that a surface of the metal layer is exposed, accommodating the semiconductor device in the recess such that the semiconductor device is mounted on the surface of the metal layer, and forming a resin insulating layer on the first insulating resin substrate such that the semiconductor device accommodated in the recess is covered.
Abstract:
A wiring board includes an insulating board, a wiring sub board having a wiring layer, and an insulating layer. The insulating layer has a via hole in which a conductor is formed by plating. The insulating board and the wiring sub board are horizontally laid out. The insulating layer is laid out to cover a boundary portion between the insulating board and the wiring sub board and continuously extends from the insulating board to the wiring sub board. A resin which constitutes the insulating layer is filled in the boundary portion. The conductor is electrically connected to the wiring layer.
Abstract:
A multilayered printed circuit board or a substrate for mounting a semiconductor device includes a semiconductor device, a first resin insulating layer accommodating the semiconductor device, a second resin insulating layer provided on the first resin insulating layer, a conductor circuit provided on the second resin insulating layer, and via holes for electrically connecting the semiconductor device to the conductor circuit, wherein the semiconductor device is accommodated in a recess provided in the first resin insulating layer, and a metal layer for placing the semiconductor device is provided on the bottom face of the recess. A multilayered printed circuit board in which the installed semiconductor device establishes electrical connection through the via holes is provided.
Abstract:
A flex-rigid wiring board includes an insulative substrate, a flexible wiring board positioned beside the insulative substrate, and an insulation layer positioned over the insulative substrate and the flexible wiring board and exposing at least a portion of the flexible wiring board. The flexible wiring board has a tapered portion which is made thinner toward the insulative substrate at an end portion of the flexible wiring board positioned beside the insulative substrate.