Abstract:
Technology is discussed for mitigating interference in a wireless communication environment where adjacent cells can have asynchronous Time Division Duplexing configurations. Measurements can be taken at an illuminated evolved Node B (eNodeB) of DownLink (DL) transmissions from a transmit eNodeB. These measurements can be relayed to the transmit eNodeB over a backhaul link and used to make scheduling, transmission power, and/or beam forming decisions to reduce the potential for DL interference. To reduce UpLink (UL) interference, sub-frame specific measurements can be requested by a transmit eNodeB of a User Equipment (UE) that would receive DL transmission from the transmit eNodeB to detect interference from any UEs performing UL transmission to an adjacent eNodeB. The interference measurements can be used by the transmit eNodeB to make scheduling determinations to mitigate the interference.
Abstract:
Embodiments relate to apparatus for wireless interference mitigation within a first User Equipment (UE). The apparatus comprises at least one channel estimator for estimating a first channel transfer function associated with a first received signal designated for the first UE, and for estimating a second channel transfer function associated with a second received, interference, signal. A symbol estimator is responsive to the at least one channel estimator to process at least the first received signal to produce a symbol estimation. A demodulator, which is responsive to the channel estimator, demodulates the symbol estimation to an output representing a received data unit corresponding to the symbol estimation. The demodulator has a processing unit arranged to demodulate the symbol estimation using the first channel transfer function, the second channel transfer function and a respective modulation scheme for at least the first received signal.
Abstract:
Generally, this disclosure provides apparatus and methods for improved control channel monitoring in a New Carrier Type (NCT) wireless network. A User Equipment (UE) device may include a receiver circuit to receive a Multicast/Broadcast over Single Frequency Network (MBSFN) for Physical Multicast Channel (P-MCH) transmission from an evolved Node B (eNB); an MBSFN for P-MCH detection module to detect and extract an enhanced physical downlink control channel (EPDCCH) signal from the MBSFN subframe for P-MCH transmission; and an EPDCCH monitor module to decode and monitor the extracted EPDCCH signal.
Abstract:
Examples include techniques for using a modulation and coding scheme (MCS) for downlink transmissions. In some examples information elements (IEs) for either a physical multicast channel (PMCH) or a physical multicast control channel (PMCCH) include information to indicate an MCS for downlink transmission over a PMCH or PMCCH between an evolved Node B (eNB) and user equipment (UE). For these examples, the information in the IEs include indications of whether higher order modulation for quadrature amplitude modulation (QAM) have or have not been enabled. Both the UE and the eNB may operate in compliance with one or more 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) standards.
Abstract:
Examples are disclosed for causing one or more subframes to be transmitted from a base station for a wireless network based on beamforming or transmission power characteristics. In some examples, an interference report may be received at a base station via a backhaul communication link. The interference report may indicate measured interference from the base station as measured at one or more wireless devices. The base station may transmit subsequent subframes in a manner to mitigate the previously reported interference. Other examples are described and claimed.
Abstract:
Embodiments for providing virtual carrier sensing for LTE are generally described herein. In some embodiments, a first evolved Node B (eNB) sends a notification of subsequent DL transmission to a first UE in a downlink. In the uplink, the first UE sends a confirmation of the received DL notification. A second eNB overhears the confirmation, decodes it and extracts the information of the DL resources that the first eNB is planning to use. If the second eNB is not already transmitting in the indicated DL resources, the second eNB marks the indicated DL resources as busy and refrains from transmitting in those resources. The second eNB may then reschedule its transmission using alternative resources so that interference from the second eNB1 may be avoided.
Abstract:
Embodiments of the present disclosure describe systems and methods for mitigating interference in wireless networks. Various embodiments may include signaling of control channel information associated with an interfering cell and utilization of the control channel information to mitigate interference. Other embodiments may be described and/or claimed.
Abstract:
Embodiments of the present disclosure describe devices, methods, computer-readable media and systems configurations for configuring coordinated multipoint (CoMP) for network devices. In various embodiments, configuration of the CoMP may be based on channel state information reference signals. Other embodiments may be described and/or claimed.
Abstract:
A user equipment (UE) power-cycles UE transmission modem components to reduce overall UE power consumption. For example, multiple HARQ ACK/NACK feedback bits are aggregated for a predetermined number of consecutive DL subframes, and then the feedback is transmitted in a single dedicated UL subframe so that a transmitter and power amplifier may be temporarily turned off (State 3) to reduce power consumption in the UE.
Abstract:
Embodiments of the present disclosure describe devices, methods, computer-readable media, and systems configurations for configuration of downlink coordinated multipoint (CoMP) communications in a wireless communication network. A user equipment (UE) may receive, from an evolved Node B (eNB), a radio resource control (RRC) transmission including channel state informations (CSI) reference signal (RS) parameters for a plurality of transmission points. The UE may subsequently receive a medium access control (MAC) control element (CE) including a plurality of index bits corresponding to one or more activated transmission points of the plurality of transmission points for which the feedback module is to generate CSI-RS feedback. The eNB may dynamically update the transmission points that are activated for CSI-RS feedback. The UE may receive another MAC CE from the eNB to notify the UE of the updated set of activated transmission points.