Abstract:
This invention relates generally to structure and method for preventing metal diffusion between a noble metal layer and an adjoining non-noble metal layer, and more specifically to new structures and methods for providing a superbarrier structure between copper and an adjoining noble metal layer. This is achieved by sequentially deposited a layer of non-noble metal, a layer of titanium, a layer of molybdenum, and a layer of noble or relatively less noble metal as the interconnecting metallurgy. This invention also relates to an improved multilayer metallurgical pad or metallurgical structure for mating at least a portion of a pin or a connector or a wire to a substrate.
Abstract:
Certain components of an integrated circuit package are disclosed herein including one or more dies, each of which has an array of die output/input bond pads, and die support means, for example a substrate or leadframe, which includes an array of electrically conductive leads. There is also disclosed herein a technique for wire bond connecting the bond pads of a particular die to either the bond pads of a second die or to the electrically conductive leads of the substrate or leadframe using a thermosonic or thermocompression ball bonding tool. In accordance with this technique, where at least one die is involved, connections are made to the bond pads of that die by means of stitch bonding in a way which does not damage the die.
Abstract:
There is disclosed a semiconductor device having an electrode for wire bonding, comprising a first aluminum layer, a nickel-aluminum alloy layer, and a second aluminum layer. The electrode is suitable for bonding with copper wire, since the electrode withstands a wide range of bonding conditions--mechanical pressure, ultrasonic wave power and such, and permits a reliable electrical connection to be maintained.
Abstract:
Disclosed is a resin-molded type semiconductor device having a thin package while avoiding short-circuit of wires with a common inner lead. In the construction thereof, a common inner lead constituted by a thin metal sheet is fixed onto a circuit-forming surface of a rectangular semiconductor chip substantially in parallel with longer sides of the chip and substantially in a central region of the chip, and a plurality of inner leads for signals, which are in the form of a frame, are stacked and fixed onto the common inner lead; then these components are molded with resin.
Abstract:
The present invention consists in that a through hole of large area is provided in a die pad or a tab, thereby to prevent a resin from cracking at the rear surface of a surface-packaging resin package in a high-temperature soldering atmosphere of vapor-phase reflow or the like, whereby a resin-molded surface-packaged IC of high reliability is provided.
Abstract:
A wire bonding method for connecting an electrode pad on a semiconductor chip and an inner lead of a lead frame through a metal wire is described. The wire bonding method is performed by moving a bonding tool holding the wire metal. The method comprises the steps of calculating the height difference between the electrode pad and the inner lead, determining a reverse movement amount of the bonding tool according to the height difference, and reversing the bonding tool horizontally at a predetermined level by the determined reverse movement amount while raising vertically the bonding tool. According to the present invention, the amount of reverse movement of the bonding tool may be automatically changed in accordance with the height difference and without reliance on an operator.
Abstract:
An integrated circuit package is disclosed which has decoupling capacitors mounted within the cavity. A first embodiment has a thin-film capacitor mounted to the die attach of the header, with a first wire bond connecting the top surface to a lead finger of the header, and with a second wire bond connecting the top surface to the semiconductor chip mounted in the package. A second embodiment allows for decoupling of the power supply to a reference voltage other than that of the substrate, by providing a stacked capacitor where the top capacitor has a smaller cross-sectional area than the lower capacitor. Bond wires connect the top surface of the top capacitor to a first power supply lead, such as V.sub.cc, and to the V.sub.cc bond pad of the chip. The top surface of the lower capacitor, and consequently the lower surface of the top capacitor, are connected by bond wires to the reference supply (V.sub.ss) lead of the package and bond pad of the chip.
Abstract:
A semiconductor device having an MOS-type gate and a main power conduction path through the thickness of the chip has a first main contact on the front surface of the device and a second main contact on the back surface of the device. The contact on the front surface overlies junctions defining the MOSGATE structure and has a solderable electrode. The solderable electrode is enclosed by a dam of amorphous silicon. Solder will not wet amorphous silicon so that the solder is contained within the periphery-defined by the amorphous silicon. The solderable electrode permits heat to be withdrawn from the front surface of the chip and equalizes the current density over all areas underlying the front main contact to prevent hot spots. The solderable contact reduces damage to the cells underlying the front contact as could occur during compression bonding of a lead to a conventional non-solderable aluminum contact.
Abstract:
A semiconductor device in which a pellet and external leads are connected by bonding wires made of aluminum containing a predetermined amount of at least one additive element, the bonding wires containing 0.05 to 3.0 weight % of at least one element selected from the group consisting of iron and palladium, or containing 0.05-3.0 weight % of at least one first element selected from the group consisting of nickel, iron and palladium and 0.05-3.0 weight % of at least one second element selected from the group consisting of magnesium, manganese and silicon, whereby the corrosion resistance of the wire is increased and the breaking strength of the wire is enhanced. The bonding wires can be connected to the semiconductor pellet by a ball bond, and it is disclosed that using a ball having a Vickers hardness of 30-50 enables good bonding of the bonding wire to, e.g., an aluminum pad on the semiconductor pellet to be achieved. A ball having such hardness can be provided by using specific aluminum alloy compositions and by a quenching of the ball. The bonding wire has the shape and height of its loop controlled by annealing the bonding wire at a specified temperature before bonding or by employing a specified composition for the material of the bonding wire. The loop shape and bondability of the bonding wire, which can be made of aluminum or an aluminum composition containing, e.g., about 1.5 weight % of magnesium, are controlled into the best states.
Abstract:
A method of providing a raised contact portion on a contact area of an electronic microcircuit in which a ball is formed at one end of a metal wire by means of thermal energy, the ball is pressed against a contact area of the electronic microcircuit and is connected to said contact area. A weakening is created in the wire near the ball and the wire is then severed at the area of the weakening to provide the desired raised contact portion.