Abstract:
A method of forming a semiconductor device includes providing a semiconductor device including a conductor formed thereon. A dielectric layer is formed over the conductor and a recess is formed in the dielectric layer by removing a portion of the dielectric layer to expose at least a portion of the conductor. A first layer of aluminum is deposited over the top surface of the dielectric, along the sidewalls of the dielectric layer and over the exposed portion of the conductor without altering the temperature of the semiconductor device. A second layer of aluminum is deposited over the first layer of aluminum at a temperature greater than about 300° C. A third layer of aluminum is deposited over the second layer of aluminum so as to completely fill the recess in the dielectric layer. The third layer of aluminum is slow deposited at a temperature greater than about 300° C.
Abstract:
Disclosed is a method of ball grid array packaging, comprising the steps of providing a semiconductor die having a metal conductors thereon, covering said metal conductors with an insulative layer, etching through said insulative layer so as to provide one or more openings to said metal conductors, depositing a compliant material layer, etching through said compliant material layer so as to provide one or more openings to said metal conductors, depositing a substantially homogenous conductive layer, patterning said conductive layer so as to bring at least one of said metal conductors in electrical contact with one or more pads, each said pad comprising a portion of said conductive layer disposed upon said compliant material, and providing solder balls disposed upon said pads. Also disclosed is the apparatus made from the method.
Abstract:
A semiconductor component has integrated a coreless transformer with a first connection contact, a second connection contact, an electrically conductive spiral first coil, an electrically conductive first ring, and an electrically conductive second ring. The electrically conductive spiral first coil is electrically connected between the first connection contact and the second connection contact. The electrically conductive first ring surrounds the first coil and one or both of the first connection contact and the second connection contact. The electrically conductive second ring is arranged between the first coil and the first ring, electrically connected to the first coil, and surrounds the first coil and one or both of the first connection contact and the second connection contact.
Abstract:
An integrated circuit includes a base element and a copper element over the base element, the copper element having a thickness of at least 5 μm and a ratio of average grain size to thickness of less than 0.7.
Abstract:
A method of filling a damascene structure with liner and W characterized by improved resistance and resistance spread and adequate adhesion comprising: a given damascene structure coated by a liner which purposely provides poor step coverage into the afore mentioned structure, followed by a CVD W deposition, and followed by a metal isolation technique.
Abstract:
One or more embodiments relate to a method for making a semiconductor structure, comprising: providing a workpiece; forming a barrier layer over the workpiece; forming a separation layer over the barrier layer; forming a conductive layer over the separation layer; and wet etching the conductive layer.
Abstract:
An integrated circuit includes a base element and a copper element over the base element, the copper element having a thickness of at least 5 μm and a ratio of average grain size to thickness of less than 0.7.
Abstract:
One or more embodiments relate to a method of forming an electronic device, comprising: providing a workpiece; forming a first barrier layer over the workpiece; forming an intermediate conductive layer over the first barrier layer; forming a second barrier layer over the intermediate conductive layer; forming a seed layer over the second barrier layer; removing a portion of the seed layer to leave a remaining portion of the seed layer and to expose a portion of the second barrier layer; and electroplating a fill layer on the remaining portion of the seed layer.
Abstract:
One or more embodiments relate to a method of forming a semiconductor structure, comprising: providing a workpiece; forming a barrier layer over the workpiece; forming a seed layer over the barrier layer; forming an inhibitor layer over the seed layer; removing a portion of said inhibitor layer to expose a portion of the seed layer; and selectively depositing a fill layer on the exposed seed layer.
Abstract:
A semiconductor device includes a chip comprising a contact element, a structured dielectric layer over the chip, and a conductive element coupled to the contact element. The conductive element comprises a first portion embedded in the structured dielectric layer, a second portion at least partially spaced apart from the first portion and embedded in the structured dielectric layer, and a third portion contacting a top of the structured dielectric layer and extending at least vertically over the first portion and the second portion.