Abstract:
A strengthened semiconductor die substrate and package are disclosed. The substrate may include contact fingers formed with nonlinear edges. Providing a nonlinear contour to the contact finger edges reduces the mechanical stress exerted on the semiconductor die which would otherwise occur with straight edges to the contact fingers. The substrate may additionally or alternatively include plating traces extending at an angle from the contact fingers. Extending at an angle, at least the ends of the plating traces at the edge of the substrate are covered beneath a lid in which the semiconductor package is encased. Thus, when in use with a host device, contact between the ends of the plating traces beneath the lid and contact pins of the host device is avoided.
Abstract:
A semiconductor die package is disclosed. An example of the semiconductor package includes a first group of semiconductor die interspersed with a second group of semiconductor die. The die from the first and second groups are offset from each other along a first axis and staggered with respect to each other along a second axis orthogonal to the first axis. A second example of the semiconductor package includes an irregular shaped edge and a wire bond to the substrate from a semiconductor die above the lowermost semiconductor die in the package.
Abstract:
An electronic component is disclosed including a plurality of stacked semiconductor packages. A first such embodiment includes an internal connector for electrically coupling the stacked semiconductor packages. A second such embodiment includes an external connector for electrically coupling the stacked semiconductor packages.
Abstract:
A laminating device (230) and method are disclosed for laminating semiconductor die (220) on substrates on a panel (200) of substrates. The laminating device (230) includes lamination units (234,236,238,240) that operate independently of each other so that a row or column of semiconductor die (220) may be independently laminated onto a row or column of substrates simultaneously.
Abstract:
A wire bonded structure for a semiconductor device is disclosed. The wire bonded structure comprises a bonding pad; and a continuous length of wire mutually diffused with the bonding pad, the wire electrically coupling the bonding pad with a first electrical contact and a second electrical contact different from the first electrical contact.
Abstract:
A flash memory card and methods of manufacturing same are disclosed. The card includes a semiconductor package fabricated to receive a single-sided or double-sided lid. A surface of the semiconductor package may be formed with holes, trenches and/or pockmarks. After the holes, trenches and/or pockmarks are formed, a lid may be attached to the package surface in an injection molding process. During the injection molding process, the molten plastic flows into the holes, trenches and/or pockmarks to interconnect with the surface of the semiconductor package. Thus, when the molten plastic hardens, the holes, trenches and/or pockmarks ensure that the lid remains firmly attached to semiconductor package.
Abstract:
An electronic component is disclosed including a plurality of stacked semiconductor packages. A first such embodiment includes an internal connector for electrically coupling the stacked semiconductor packages. A second such embodiment includes an external connector for electrically coupling the stacked semiconductor packages.
Abstract:
A laminating device (230) and method are disclosed for laminating semiconductor die (220) on substrates on a panel (200) of substrates. The laminating device (230) includes lamination units (234,236,238,240) that operate independently of each other so that a row or column of semiconductor die (220) may be independently laminated onto a row or column of substrates simultaneously.
Abstract:
A memory device including graphical content and a method of making the memory device with graphical content are disclosed. The graphical content is formed on a release media. The release media and the unencapsulated memory device are placed in a mold and encapsulated. During the encapsulation and curing of the molding compound, the graphical content is transferred from the release media to the encapsulated memory device.
Abstract:
A memory device is disclosed including at least one surface pre-treated to roughen the surface for better adhesion of ink on the surface. The surface of the memory device may be pre-treated by scoring lines in the surface with a laser or by forming discrete deformations with a particle blaster. The surface may also be roughened by providing a roughened pattern on a mold plate during an encapsulation process. In further examples, the surface may be chemically pre-treated to roughen the surface and/or increase the adhesion energy of the surface.