Abstract:
An electrolyte distribution supply system for use with a fuel cell having a wicking medium for drawing electrolyte therein is formed by a set of containers of electrolyte joined to respective fuel cells or groups thereof in a stack of such cells. The electrolyte is separately stored so as to provide for electrical isolation between electrolytes of the individual cells or groups of cells of the stack. Individual storage compartments are coupled by individual tubes, the ends of the respective tubes terminating on the wicking medium in each of the respective fuel cells. The individual compartments are filled with electrolyte by allowing the compartments to overflow such as in a cascading fashion thereby maintaining the requisite depth of electrolyte in each of the storage compartments. The individual compartments can also contain packed carbon fibers to provide a three stage electrolyte distribution system.
Abstract:
A flexible circuit includes a plurality of electrical traces and a plurality of probe tips directly formed thereto. The electrical traces are made of a first electrically conductive material and the probe tips are made of a second electrically conductive material that is harder than the first electrically conductive material. The first material is copper or a copper alloy and the second matieral is nickel or a nickel alloy, where the second material may be plated with gold. Portions of the probe tips are exposed to facilitate electrical contact with contact pads of another electrical circuit. The flexible circuit may also include a ground layer to facilitate electrical correction with another electrical circuit at relatively high frequencies.
Abstract:
A method for attaching an integrated circuit to a flexible circuit which includes the acts of providing an integrated circuit having a plurality of contact pads formed upon a surface thereof; providing a flexible circuit possessing a plurality of contact bumps formed integral to a surface area; and attaching the integrated circuit to the flexible circuit by fusing at least some of the contact bumps of the flexible circuit to at least some of the contact pads of the integrated circuit. The contact bumps have a shape which mitigates local stress buildup within the contact bumps after attachment of the contact bumps to the contact pads, so as to enhance the reliability of the electrical connection.
Abstract:
The present invention includes composite support substrate for both flexible and rigid board circuit applications and method of making the same. The composite substrate is composed of at least two materials formed under the circuitry. A first material is a conventional matrix such as a polyimide/acrylic adhesive, and a second material having unique properties that are useful locally in isolated locations. For instance, the second material may be nonporous to moisture, optically clear, and/or thermally conductive. The second material is integrated into the circuit matrix at specific localized areas where desired with portions coplanar with the first material so that circuit traces remain continuous as they pass from the first material to the second. For example, an integrated circuit chip may be isolated from the polyimide matrix, which is porous in moisture, by using the second material that is nonporous to moisture at locations where the integrated circuit chip is to be attached, thus isolating the integrated circuit chip from the polyimide and preventing moisture from flowing through to the chip.
Abstract:
Disclosed is a flexible substrate having a thermal contact that provides a continuous high thermal conductivity path from a heat generating component to a heat sink. In one embodiment, the thermal contact includes a metallic trace including a raised feature of thermally conductive material. A solder ball or fillet may be used to make a connection between the raised feature and the heat generating component or between the raised feature and the underlying heat sink or both.
Abstract:
Shaped contacts (40,42) for interconnecting circuits or for use in an integrated circuit test probe are electroplated as integral parts of circuit traces (34) upon a stainless steel mandrel (10). A shaped, hardened steel indentation tool (16,18,26,28) makes indentations (24a,24b) of predetermined shape in the surface of the mandrel (10), which is provided with a pattern of dielectric, such as Teflon (12), or photoresist. Areas of the steel mandrel, including the indentations (24a,24b), are electroplated with a pattern of conductive material (34,36,38), and a dielectric substrate (32) is laminated to the conductive material. The circuit features formed by the indentations define raised contacts of a conical (18) or pyramidal (28) shape, having free ends with a small area that allows higher pressures to be applied to a surface against which the contacts are pressed. This enables the contacts to penetrate foreign materials, such as oxides, that may form on the surface of the pads (56,58), to which the contacts are to be connected to ensure a good contact without any need for wiping action. The projecting contacts can also be pressed into plated holes (82,84) in a substrate, such as a printed wiring board, to which mateable/demateable electrical connection is to be made.
Abstract:
A pressure type contact (10) for flexible or conventional wire cable terminations is fabricated from electroformed thin metallic wafers in which one wafer is plated with a raised conductive interconnection feature. The raised feature is formed by placing a small lump (44) of electrically conductive resin on a substrate (12) and then electrolytically forming on the substrate a trace (18) having an enlarged connector pad (20) that completely covers the cured projecting resin lump.
Abstract:
A shield assembly useful in the attenuation of electronic noise or spurious electric signals. In one embodiment, the shielding assembly comprises a metallic component that is encapsulated with an electronic component to be shielded, such as an integrated circuit. A conductive coating is applied to an exterior surface of the encapsulated metallic and electronic components so that it is in contact with the metallic component. The metallic component is formed using a selective metal deposition process (e.g., electroforming) and a laser-cutting process that increase manufacturing efficiency and provide enhanced mechanical and structural features, including especially the ability to make the shield very thin, have a high degree of co planarity, and maintain a low profile for the shielded electronic component as a whole (i.e., add very little height to that of the electronic component). Methods of manufacturing and utilizing the shielding assembly in designs are also disclosed.
Abstract:
A Z-axis electrical interconnect includes a flexible printed circuit folded into a U-shape. The Z-axis electrical interconnect also includes a plurality of raised interconnection members arranged on the flexible printed circuit in a predetermined pattern and a circuit trace interconnecting the pair of raised interconnection members. The Z-axis electrical interconnect further includes a spring fixedly positioned on the flexible printed circuit to maintain the U-shape.
Abstract:
A chip scale package includes a mandrel built flexible circuit having a circuit trace on a first surface and an aperture extending therethrough. The chip scale package includes a pad covering the aperture on the first surface of the flexible circuit and a raised interconnection member extending outwardly from the pad. The chip scale package also includes a chip secured to a second surface of the flexible circuit, such that the chip is electrically connected to the pad.