Abstract:
A fabrication method of a semiconductor package includes the steps of: providing a carrier having a concave portion and a releasing layer formed on a surface thereof; disposing a chip on the releasing layer in the concave portion; forming an encapsulant on the chip and the releasing layer; removing the releasing layer and the carrier; and forming a circuit structure on the encapsulant and the chip. The design of the concave portion facilitates alignment of the chip to prevent it from displacement, thereby improving the product reliability. A semiconductor package fabricated by the fabrication method is also provided.
Abstract:
A fabrication method of a semiconductor package includes the steps of: forming a release layer on a carrier having concave portions; disposing chips on the release layer in the concave portions of the carrier; forming an encapsulant on the chips and the release layer; forming a bonding layer on the encapsulant; removing the release layer and the carrier so as to expose the active surfaces of the chips; and forming a circuit structure on the encapsulant and the chips. Since the release layer is only slightly adhesive to the chips and the encapsulant, the present invention avoids warpage of the overall structure during a thermal cycle caused by incompatible CTEs.
Abstract:
A method of fabricating a semiconductor package is provided, including: disposing a plurality of semiconductor elements on a carrier through an adhesive layer in a manner that a portion of the carrier is exposed from the adhesive layer; forming an encapsulant to encapsulate the semiconductor elements; removing the adhesive layer and the carrier to expose the semiconductor elements; and forming a build-up structure on the semiconductor elements. Since the adhesive layer is divided into a plurality of separated portions that will not affect each other due to expansion or contraction when temperature changes, the present invention prevents positional deviations of the semiconductor elements during a molding process, thereby increasing the alignment accuracy.
Abstract:
A fabrication method of a semiconductor structure includes providing a chip having at least an electrode pad, forming a titanium layer on the electrode pad, forming a dielectric layer on the chip and a portion of the titanium layer, forming a copper layer on the dielectric layer and the titanium layer, forming a conductive pillar on the copper layer corresponding in position to the titanium layer, and removing a portion of the copper layer that is not covered by the conductive pillar. When the portion of the copper layer is removed by etching, undercutting of the titanium layer is avoided since the titanium layer is covered by the dielectric layer, thereby providing an improved support for the conductive pillar to increase product reliability.
Abstract:
A semiconductor device is provided, including: a substrate having opposing first and second surfaces and a plurality of conductive vias passing through the first and second surfaces; an insulating layer formed on the first surface of the substrate and exposing end portions of the conductive vias therefrom; and a buffer layer formed on the insulating layer at peripheries of the end portions of the conductive vias, thereby increasing product reliability and good yield.
Abstract:
A method for fabricating an electronic package is provided, including steps of: providing a carrier having at least an electronic element and at least a package block disposed thereon, wherein the package block has a plurality of conductive posts bonded to the carrier; forming an encapsulant on the carrier for encapsulating the electronic element and the package block; and removing the carrier so as to expose the electronic element and the conductive posts from a surface of the encapsulant. As such, the invention dispenses with formation of through holes in the encapsulant for forming the conductive posts as in the prior art, thereby saving the fabrication cost.
Abstract:
A packaging substrate includes a base body having at least a conductive pad on a surface thereof, a dielectric layer formed on the surface of the base body and having at least a first opening for exposing the conductive pad and at least a second opening formed at a periphery of the first opening, and a metal layer formed on the conductive pad and the dielectric layer and extending to a sidewall of the second opening, thereby effectively eliminating side-etching of the metal layer under a solder bump.
Abstract:
A packaging substrate includes a base body having at least a conductive pad on a surface thereof, a dielectric layer formed on the surface of the base body and having at least a first opening for exposing the conductive pad and at least a second opening formed at a periphery of the first opening, and a metal layer formed on the conductive pad and the dielectric layer and extending to a sidewall of the second opening, thereby effectively eliminating side-etching of the metal layer under a solder bump.
Abstract:
An electronic device package and manufacturing method are provided, including steps of: providing a carrier having at least an electronic element and at least a package block disposed thereon, wherein the package block has a plurality of conductive posts bonded to the carrier; forming an encapsulant on the carrier for encapsulating the electronic element and the package block; and removing the carrier so as to expose the electronic element and the conductive posts from a surface of the encapsulant. As such, the invention dispenses with formation of through holes in the encapsulant for forming the conductive posts as in the prior art, thereby saving the fabrication cost.
Abstract:
A semiconductor package is provided, including: an insulating layer; a semiconductor element embedded in the insulating layer; an adhesive body embedded in the insulating layer, wherein a portion of the semiconductor element is embedded in the adhesive body; a patterned metal layer embedded in the adhesive body and electrically connected to the semiconductor element; and a redistribution structure formed on the insulating layer and electrically connected to the patterned metal layer. By embedding the semiconductor element in the adhesive body, the present invention can securely fix the semiconductor element at a predetermined position without any positional deviation, thereby improving the product yield.