Abstract:
The present invention relates to a wave soldering process wherein an inert gas atmosphere is injected inside the wave soldering machine, the inert gas atmosphere having a temperature which might be controlled. Particularly, the atmosphere can be heated at the same or different temperatures before injection, for example in the preheating zones, in the machine. The atmosphere can also be cooled (or injected at ambient temperature) e.g. in the cooling zone. Various atmospheres can be used (similar or different from one zone to another). Also, maintaining the atmosphere under forced laminer flow conditions improves the quality of the solder joints. The thermal efficiency of the heat transfer between the atmosphere and the printed circuit boards is thus greatly enhanced, which means less solder defects, higher components density and decrease of energy consumption and inert gas flow rate.
Abstract:
A fluxless soldering sample pretreating system includes a sample chamber having an opening therein and a sample holder. A sample chamber extension extends outwardly from the opening to define a passageway from the sample chamber extension, through the opening, and into the sample chamber. A fluorine-containing gas is supplied into the sample chamber extension. Am energy source such as a microwave oven surrounds the sample chamber extension. The microwave oven produces microwave energy in the sample chamber extension to form a plasma therein and dissociate the fluorine-containing gas into atomic fluorine. A perforated aluminum plate extends transversely across the passageway and blocks the plasma from traversing the passageway from the sample chamber extension into the sample chamber, while allowing the atomic fluorine to traverse the passageway from the sample chamber extension into the sample holder. A second chamber extension, gas supply and microwave oven may be added to improve uniformity for large samples.
Abstract:
A method of soldering a copper layer without the use of fluxing agents by exposing the copper layer to a fluorine-containing plasma. Solder is then placed onto the surface of the copper layer and reflowed. Reflow can take place at low temperatures, atmospheric pressure and in an inert or oxidizing atmosphere using standard solder reflow equipment.
Abstract:
A method and an apparatus align and attach a leadless surface mount component (402) including a termination at each end of the component (402). The termination has bottom (704) and end (702) portions for attaching to a corresponding pad on a substrate (102) by a reflow solder process (1200). A pad arrangement (100) is formed including two opposite pads (108), each pad (108) occupying a tri-oval-shaped area. The tri-oval-shaped area includes an elliptical area (110) substantially centered under the bottom portion (704) of the corresponding termination of the component (402) when the component (402) is aligned with the pad arrangement (100), and an arcuate area (112) contiguous with the elliptical area (110) and extending towards the opposite pad (108) in a central lengthwise direction. A solder paste (202) is applied to the elliptical area (110), and thereafter reflowed, whereby solder (302) in the solder paste (202) liquefies and flows onto the arcuate area (112), thereby facilitating alignment of the component (402) with the pad arrangement (100).
Abstract:
A method for bonding a solder wire is provided wherein a lower ball end of a material solder wire is first bonded to a first bonding portion of a workpiece. Then, the material solder wire is thermally cut to provide a solder wire segment held bonded to the first bonding portion and having an upper ball end. Finally, the upper ball end is bonded to a second bonding portion of the workpiece. All of the wire bonding process steps are performed in an oxygen-free atmosphere to prevent oxidation of the solder wire.
Abstract:
A method is provided for electrically connecting a first electronic component which is not resistant to a reflowing temperature and a second electronic component which is resistant to the reflowing temperature to a substrate. The method includes the steps of applying cream solder to a first predetermined portion of the substrate so that the first electronic component is connected therewith and to a second predetermined portion of the substrate so that the second electronic component is connected therewith, mounting the second electronic component on the substrate, heating the second electronic component mounted on the substrate by reflowing so as to solder the second electronic component onto the substrate, forming a pre-soldered portion made of cream solder on the first predetermined portion of the substrate, applying flux to one of the first electronic component and the pre-soldered portion, mounting the first electronic component on the first predetermined portion of the substrate, melting the cream solder of the pre-soldered portion by heating the substrate locally, and soldering the first electronic component onto the substrate. Another method for electrically connecting an unwashable electronic component and a washable electronic component to a substrate includes similar steps to those of the method above.
Abstract:
The invention relates to a method for soldering together a first, in particular electrical, component with a second, in particular electrical, component, where a solder preform is disposed between the components and is fixed by pressing it against edges of at least one depression in one of the components to prevent lateral dislocation and where subsequently the soldering process takes place, preferably in a soldering furnace. A special feature is that the depression is formed as grooves (10) extending in a closed loop (11), in particular in the shape of a circle.
Abstract:
A sintering method and fusion welding method of the present invention are characterized in that energy is radiated to the black component of starting materials so as to convert it from the state of an energy absorber to the state of an energy reflector (the state where metallic luster is exhibited). The methods can be utilized effectively for forming the electrode of a sensor or the bump of an electronic component. When applied to the production of the sensor and the electrode, the methods can produce these products by a simple production process and with extremely high producibility.
Abstract:
A weld tip for use is capillary bonding welding for electronic components includes a structural body member having a conically tapered end which forms the welding tip. A bore is provided in axial alignment with the center axis of the body member, the portion of the bore in the region of the tip forming the welding end being frusto-conical in shape, i.e., tapered with respect to the central axis, while the other end of the bonding tip includes a generally cylindrical bore. Positioned between the cylindrical bore and the tapered bore at the tip end is a second tapered bore, the latter being tapered to a greater degree than the bore at the tip end of the tool. The tip is formed by a chemical vapor deposition procedure utilizing an improved mandrel of a predetermined configuration such that preselected openings may be provided in the free end of the welding tip by cutting at preselected points along the axis of the mandrel. Thus, one mandrel may be used to provide welding tips having apertures in the working end thereof of different diameters. Typical materials which may be used as the structural material are tungsten, rhenium, molybdenum, and alloys thereof, tantalum carbide and columbium carbide, the preferred material being an alloy of tungsten and carbon wherein the carbon is present in an amount of between 0.40% and 0.50% by weight.
Abstract:
A pulsed thermocompression bonder is provided comprising a bonding or capillary tip and an electronics system to regulate the bonding or capillary tip temperature. A switch automatically provides a start bond signal when the operator lowers the bonder tip to bonding position to commence a bonding operation. The start bond signal activates an AC control circuit which causes current flow in a heating transformer until the tip is at predetermined bonding or operating temperature. The AC control circuit then stops current flow from being supplied to the heating transformer for a predetermined cooling time. In subsequent sequential periods iteratively the current is allowed to flow to the heating transformer until a predetermined temperature is reached and is cut off for the predetermined period of cooling. Adjustment means are provided to regulate offand-on current time so that once the predetermined desired temperature is reached an approximately constant desired temperature or flat heat curve is obtained until the end of the bonding operation. A sensing circuit connected to the bonder tip senses a rise in voltage due to an increase in tip resistance when the tip is being heated to the predetermined bonding temperature. After rising to desired predetermined temperature the sensing circuit (1) triggers a timing one shot multivibrator which sets and resets an on-off flip-flop circuit to regulate the heating cycle duration for a given bonding operation and (2) triggers an on-off one-shot multivibrator each time the predetermined temperature is reached in the heating cycle. The voltage outputs of the on-off flip-flop and one-shot multivibrator circuits are mixed and applied to the AC control circuit. The on-off one-shot multivibrator stops current flow to the heating transformer for the predetermined period upon each sensing of reaching the predetermined operating temperature during the bonding cycle. The on-off flip-flop as determined by the timing one shot multivibrator changes state and terminates the bonding cycle.