Abstract:
This specification discloses various improvements in the field of SPR sensing systems. One improvement relates to a portable SPR sensing system, e.g., a system contained within a suitcase that can be hand-carried to a monitoring site. Another improvement relates to a portable, cartridge-based SPR sensing system. In this system, selected portions of the system's electrical and fluidics systems are allocated between a base unit and a removable/disposable cartridge. Other improvements relate to methods or protocols for operating an SPR sensing system. Such methods provide for the elimination of false positives and increased sensitivity, e.g., by using secondary antibodies with specificity for different target epitopes and by sensor element redundancy. In addition, protocols are provided for the detection of small molecules. Such protocols may employ a competition type assay where the presence of the analyte inhibits the binding of antibodies to surface immobilized analyte, or a displacement assay, where antibodies bound to the analyte on the sensor surface are displaced by free analyte.
Abstract:
Optical interrogation systems and methods are described herein that are capable of measuring the angles (or changes in the angles) at which light reflects, transmits, scatters, or is emitted from an array of sensors or specimens that are distributed over a large area 2-dimensional array.
Abstract:
An optical interrogation system and method are described herein that are capable of generating light beams that have desired optical properties which are directed towards a specimen array. In one embodiment, the optical interrogation system includes a light source, a diffractive element and a collimating optic (e.g., simple lens(es), f-θ lens(es), segmented mirror, fiber array). The light source emits a light beam to the diffractive optic which receives the light beam and outputs an array of light beams to the collimating optic. The collimating optic receives and conditions the light beams emitted from the diffractive optic and then outputs the conditioned light beams which have desired optical properties towards a specimen array. Several other embodiments of the optical interrogation system are also described herein.
Abstract:
Improved devices, systems, and methods for sensing and/or identifying signals from within a signal detection region are well-suited for identification of spectral codes. Large numbers of independently identifiable spectral codes can be generated by quite small bodies, and a plurality of such bodies or probes may be present within a detection region. Simultaneously imaging of identifiable spectra from throughout the detection region allows the probes to be identified. As the identifiable spectra can be treated as being generated from a point source within a much larger detection field, a prism, diffractive grading, holographic transmissive grading, or the like can spectrally disperse the images of the labels across a sensor surface. A CCD can identify the relative wavelengths of signals making up the spectra. Absolute signal wavelengths may be identified by determining positions of the labels, by an internal wavelength reference within the spectra, or the like.
Abstract:
An apparatus 10 for inspecting the surface of an object S moving in the direction of travel 23 relative to the apparatus comprises a modular sensing head assembly 11 including a plurality of sensing head modules 12, 13, each of which includes a number of sensing stations 16-21. Each sensing station includes a light source 77, 81, 84 for generating a line of light extending across substantially the width of the surface of the object and a plurality of optical detector means for detecting light scattered from the line of light by the surface of the object. The optical detectors are positioned and oriented to receive scattered light scattered along paths lying in detection planes which are perpendicular to each other and perpendicular to the surface of the object. Signal processing electronics are provided to convert the light received by the detectors into analog signals which are multiplexed, converted to digital signals, filtered and then compared to preselected thresholds to determine the existence of any defects in the surface.
Abstract:
A photometer with controllable heating plates both above and below the set of sample cuvettes. The photometer is in particular used so that the upper plate is regulated to be warmer.
Abstract:
A dispensing device, for dispensing reagent into an array of reaction wells (16) in a photographic recording apparatus, comprises an array of tubes (28) which are mounted in a support (23). The support (23) contains a common chamber (29) into which the tops of all the tubes (28) open. The chamber (29) is connected with atmosphere via an opening (32) which is sealable manually to retain liquid in the tubes (28) when the latter are immersed in a reservoir (40) and which is unsealed to dispense the liquid. The recording apparatus has a housing (10) closable at the top by part of the support (23). A plate (11) having an array of holes (15) therethrough rests on a shutter (13) disposed above a photographic film holder (12). The plate (11) carries the reaction wells (16) in the holes (15).
Abstract:
A configuration of detecting light from the front face of a light source is the best for confirming the variation of a light quantity, but when a plurality of light sources are present, as many detectors for checking a light quantity as the light sources are necessary and the apparatus configuration becomes complex. In the present invention, a detector for checking a light source light quantity is installed in a reaction container transfer mechanism used commonly for a plurality of detection sections, and the light quantities of light sources are checked with the detector.
Abstract:
The present teachings relate to a method and system for normalizing spectra across multiple instruments. In an embodiment of the present invention, the method comprises at least one reference instrument and a test instrument. Each instrument comprises at least one excitation filter and at least one emission filter arranged in pairs. Each instrument further comprises a pure dye plate comprising a plurality of wells. Each well contains a plurality of dyes where each dye comprises a fluorescent component. Fluorescent spectra are obtained from each instrument for each dye across multiple filter combinations to contribute to a pure dye matrix Mref for the reference instrument and pure dye matrix M for the test instrument. The pure dye spectra can then be multiplied by correction factors for each filter pair to result in corrected pure dye spectra, then normalized and the multicomponenting data can be extracted.
Abstract:
Systems and methods are provided for sample processing. A device may be provided, capable of receiving the sample, and performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing multiple assays. The device may comprise one or more modules that may be capable of performing one or more of a sample preparation, sample assay, and detection step. The device may be capable of performing the steps using a small volume of sample.