Abstract:
A microscopic metallic structure is produced by creating or exposing a patterned region of increased conductivity and then forming a conductor on the region using electrodeposition. In some embodiments, a microscopic metallic structure is formed on a substrate, and then the substrate is etched to remove the structure from the substrate. In some embodiments, a focused beam of gallium ion without a deposition precursor gas scans a pattern on a silicon substrate, to produce a conductive pattern on which a copper structure is then formed by electrochemical deposition of one or more metals. The structure can be freed from the substrate by etching, or can used in place. A beam can be used to access an active layer of a transistor, and then a conductor can be electrodeposited to provide a lead for sensing or modifying the transistor operation while it is functioning.
Abstract:
A chamber for exposing a workpiece to charged particles includes a charged particle source for generating a stream of charged particles, a collimator configured to collimate and direct the stream of charged particles from the charged particle source along an axis, a beam digitizer downstream of the collimator configured to create a digital beam including groups of at least one charged particle by adjusting longitudinal spacing between the charged particles along the axis, a deflector downstream of the beam digitizer including a series of deflection stages disposed longitudinally along the axis to deflect the digital beams, and a workpiece stage downstream of the deflector configured to hold the workpiece.
Abstract:
A method of fabricating a three-dimensional microstructure provides data corresponding to information relating to the structure of a three-dimensional microstructure design. A sample is processed in accordance with the provided data by irradiating the sample with a charged-particle beam while controlling processing conditions of the charged-particle beam. Dimensions of the processed sample are compared with the provided data to identify differences between the structure of the processed sample and the structure of the three-dimensional microstructure design. The sample is then irradiated again with a charged-particle beam to correct the identified structural differences while adjusting the processing conditions of the charged-particle beam to thereby fabricate a three-dimensional microstructure having a structure substantially the same as the structure of the three-dimensional microstructure design.
Abstract:
A chamber for exposing a workpiece to charged particles includes a charged particle source for generating a stream of charged particles, a collimator configured to collimate and direct the stream of charged particles from the charged particle source along an axis, a beam digitizer downstream of the collimator configured to create a digital beam including groups of at least one charged particle by adjusting longitudinal spacing between the charged particles along the axis, a deflector downstream of the beam digitizer including a series of deflection stages disposed longitudinally along the axis to deflect the digital beams, and a workpiece stage downstream of the deflector configured to hold the workpiece.
Abstract:
The present invention provides a method for engraving desired irreproducible patterns on the surface of gemstones including diamond by the use of an energetic ion beam. The pattern has a characteristic topological texture, which is irreproducible even using the same ion beam to engrave onto the same location of the same diamond.
Abstract:
A device and a method for positionally accurate implantation of individual particles in a substrate surface (1a) are described. A diaphragm for a particle beam to be directed onto the substrate surface (1a) and a detector provided thereon in the form of a p-n junction for determining a secondary electron flow produced upon impact of a particle onto the substrate surface (1a) are provided on a tip (4) which is formed on a free end portion of a flexible arm (2) to be mounted on one side. The device is part of a scanning device operating according to the AFM method (FIG. 1).
Abstract:
An apparatus for assisting backside focused ion beam (FIB) device modification is disclosed. The apparatus for assisting backside FIB device modification includes an FIB device modification circuit and a control circuit. The FIB device modification circuit includes an input, an output, an FIB input pad, and an FIB output pad. The FIB device modification circuit allows the input to be electrically connected to the output. The control circuit, which is coupled to the FIB device modification circuit, may include a jumper and a cut. The control circuit is preferably located in a proximity of a backside of a substrate to allow the jumper and the cut to be modified by an FIB machine.
Abstract:
Disclosed are an apparatus for wiring a semiconductor device and a wiring method therefor which allow a manufacturing step to be simplified without deteriorating an insulation characteristic of an aerial wiring. The semiconductor device wiring apparatus includes a first beam column 1a disposed above a substrate 50 and a second beam column 1b disposed horizontally thereto. Therefore, a wiring portion of the aerial wiring to be formed upwardly is formed by using the first beam column 1a and a wiring portion to be formed horizontally to wiring layer of the substrate 50 is formed by using the second beam column, which results in that no insulating film for the aerial wiring is required to simplify manufacturing steps.
Abstract:
Methods and systems for direct atomic layer etching and deposition on or in a substrate using charged particle beams. Electrostatically-deflected charged particle beam columns can be targeted in direct dependence on the design layout database to perform atomic layer etch and atomic layer deposition, expressing pattern with selected 3D-structure. Reducing the number of process steps in patterned atomic layer etch and deposition reduces manufacturing cycle time and increases yield by lowering the probability of defect introduction. Local gas and photon injectors and detectors are local to corresponding columns, and support superior, highly-configurable process execution and control.
Abstract:
The invention relates to a method for processing a substrate with a focussed particle beam which incidents on the substrate, the method comprising the steps of: (a) generating at least one reference mark on the substrate using the focused particle beam and at least one processing gas, (b) determining a reference position of the at least one reference mark, (c) processing the substrate using the reference position of the reference mark, and (d) removing the at least one reference mark from the substrate.