Abstract:
An embodiment of the invention provides a chip package including: a first semiconductor substrate; a second semiconductor substrate disposed on the first semiconductor substrate, wherein the second semiconductor substrate includes a lower semiconductor layer, an upper semiconductor layer, and an insulating layer located between the lower semiconductor layer and the upper semiconductor layer, and a portion of the lower semiconductor layer electrically contacts with at least a pad on the first semiconductor substrate; a signal conducting structure disposed on a lower surface of the first semiconductor substrate, wherein the signal conducting structure is electrically connected to a signal pad on the first semiconductor substrate; and a conducting layer disposed on the upper semiconductor layer of the second semiconductor substrate and electrically contacted with the portion of the lower semiconductor layer electrically contacting with the at least one pad on the first semiconductor substrate.
Abstract:
An embodiment of the invention provides a chip package which includes: a first chip; a second chip disposed on the first chip, wherein a side surface of the second chip is a chemically-etched surface; and a bonding bulk disposed between the first chip and the second chip such that the first chip and the second chip are bonded with each other.
Abstract:
An embodiment of the invention provides a chip package which includes a substrate having a first surface and a second surface; a conducting pad structure located on the first surface; a dielectric layer located on the first surface of the substrate and the conducting pad structure, wherein the dielectric layer has an opening exposing a portion of the conducting pad structure; and a cap layer located on the dielectric layer and filled into the opening.
Abstract:
A method includes forming a bump on a lower surface of an interposer. A first insulation layer is formed to cover the lower surface and bump. A trench is formed extending from the lower towards an upper surface of the interposer. A polymer supporting adhesive layer is formed to surround the bump and couples between the interposer and a semiconductor chip. The semiconductor chip has at least a sensing component and a conductive pad electrically connected to the sensing component, and the bump is connected to the conductive pad. A via is formed extending from the upper towards the lower surface. A second insulation layer is formed to cover the upper surface and the via. A redistribution layer is formed on the second insulation layer and in the via. A packaging layer is formed to cover the redistribution layer and has a second opening.
Abstract:
A semiconductor structure includes a substrate, a dam element, a first isolation layer, a second isolation layer, and a conductive layer. The substrate has a conductive pad, a trench, a sidewall, a first surface, and a second surface opposite to the first surface. The conductive pad is located on the second surface. The trench has a first opening at the first surface, and has a second opening at the second surface. The dam element is located on the second surface and covers the second opening. The dam element has a concave portion that is at the second opening. The first isolation layer is located on a portion of the sidewall. The second isolation layer is located on the first surface and the sidewall that is not covered by the first isolation layer, such that an interface is formed between the first and second isolation layers.
Abstract:
A chip package including a first substrate is provided. The first substrate includes a sensing device. A second substrate is attached onto the first substrate and includes an integrated circuit device. A first conductive structure is electrically connected to the sensing device and the integrated circuit device through a redistribution layer disposed on the first substrate. An insulating layer covers the first substrate, the second substrate and the redistribution layer. The insulating layer has a hole therein and a second conductive structure is disposed under the bottom of the hole. A method for forming the chip package is also provided.
Abstract:
A method for forming a chip package, by providing a substrate having a plurality of conducting pads below a lower surface, and a dielectric layer located between the conducting pads, forming a recess in an upper surface of the substrate, forming a hole extending through the bottom of the recess, forming an insulating layer on the sidewall of the recess and in the hole, exposing a portion of the conducting pads through the insulating layer, and forming a conducting layer on the insulating layer and through the hole to contact with the conducting pads.
Abstract:
A chip package including a first substrate having a first surface and a second surface opposite thereto is provided. The first substrate has a micro-electric element and a plurality of conducting pads adjacent to the first surface. The first substrate has a plurality of openings respectively exposing a portion of each conducting pad. A second substrate is disposed on the first surface. An encapsulation layer is disposed on the first surface and covers the second substrate. A redistribution layer is disposed on the second surface and extends into the openings to electrically connect the conducting pads.
Abstract:
A chip package for a sensing element. The chip package includes a substrate having a first surface and a second surface, and a sensing layer having a sensing region disposed on the first surface of the substrate. A conducting pad structure is disposed on the substrate and electrically connected to the sensing region, and a spacer layer is disposed on the first surface of the substrate. A semiconductor substrate is place on the spacer layer. The semiconductor substrate, the spacer layer, and the substrate together surround a cavity on the sensing region. A through-hole extends from a surface of the semiconductor substrate toward the substrate, and connects to the cavity.
Abstract:
A chip package is provided. The chip package includes a substrate having a first surface and a second surface opposite thereto. The substrate includes a sensing device and a conducting pad therein. The sensing device and the conducting pad are adjacent to the first surface. The conducting pad has a sidewall laterally protruding from a sidewall of the substrate. An encapsulation layer is attached to the first surface of the substrate to cover the sensing device and the conducting pad. A redistribution layer is disposed on the second surface of the substrate and extends to contact the sidewall of the conducting pad. An end of the redistribution layer protrudes from the first surface of the substrate and is level with a third surface of the encapsulation layer that is opposite to the first surface. A method of forming the chip package is also provided.