Abstract:
The present invention relates to a method and system for reducing integral non linearity errors in a pipeline Analog to Digital Converter (ADC). The invention provides in a first embodiment a method comprising the steps of: adding an analog dither signal to the analog input signal of a pipeline Analog to Digital Converter, and converting the analog input signal to a digital output signal by means of the pipeline Analog to Digital Converter. The amplitude of the analog dither signal is determined by the architecture of the Analog to Digital Converter. The invention also provides in a second embodiment a circuit comprising a pipeline analog to digital converter for converting an analog input signal to a digital output signal and a feedback circuit coupled to the converter such that the digital output signal is adapted to have an average non linearity error value of about zero LSBs.
Abstract:
A DAC (1) has a switched element capacitor (7, Cr) to which charge is delivered via switches (6, S1/S2) depending on required analog voltage level (Vref1, Vref2). An output switch (S3) is closed and a ground switch (S4) is opened to deliver charge to the output according to received bi-level digital inputs (+1, −1). The control block (2) has a memory and determines an inactive output level if there is an input digital transition from +1 to −1 or from −1 to +1. For the inactive level S3 is kept open and S4 is kept closed. Thus, for every clock cycle with one of these transitions there is no charge transfer and hence no thermal noise. Overall noise is therefore considerably reduced.
Abstract:
A charge pump system for a fast locking phase lock loop includes a set n of charge pump units; and a control logic circuit for enabling the set of n charge pump units to produce up and down charge pulses with a nominal charge pump mismatch in a wide bandwidth mode; and in a narrow bandwidth mode enabling at least a subset of the n charge pump units sequentially to produce an average charge pump mismatch in narrow bandwidth mode that matches the nominal charge pump mismatch in the wide bandwidth mode.
Abstract:
A fractional-N synthesizer and method of phase synchronizing the output signal with the input reference signal in a fractional-N synthesizer by generating a synchronization pulse at integer multiples of periods of the input reference signal and gating the synchronization pulse to re-initialize the interpolator in the fractional-N synthesizer to synchronize the phase of the output signal with the input reference signal.
Abstract:
In a Sigma Delta converter, a succession of input signal samples are processed in an iterative manner to provide a succession of output signals and feedback signals, which are matched to the input signal samples over a specified frequency range. Two or more successive iterations are carried out in parallel so as to provide a sequence of independent outputs available in parallel. This provision of parallel outputs facilitates an overall increase in the speed of operation of the converter, which is otherwise limited by the maximum available rate of clocking of the converter's filters.
Abstract:
A sigma-delta analog to digital converter 1 is disclosed. The digital filter comprises digital integrators (8, 10) for reception of the negative feedback signal of the analog modulator. The digital integrators (8, 10) are connected to replicate processing of the feedback signal by the analog integrators (3, 5). Accordingly, the digital filter and the analog modulator may be reset simultaneously so that there is no time lag between conversion cycles. Thus, single shot operation is achieved.
Abstract:
Techniques to provide calibration of a measurement system in conjunction with measurement operations. The techniques may include providing a reference device in a signal processing chain within the measurement system. An excitation signal may be driven through the reference device while it may be connected to the signal processing chain within the measurement system and a calibration response may be captured. During a measurement operation, the reference device connection may be complemented with a sensor connection in the signal processing chain and the excitation signal may be driven through the signal processing chain. A measurement response may be captured from the system. The measurement system may generate a calibrated measurement signal that accounts for phase and/or amplitude errors within the system from the calibration response and the measurement response.
Abstract:
Embodiments of the present invention provide an integrated circuit system including a first active layer fabricated on a front side of a semiconductor die and a second pre-fabricated layer on a back side of the semiconductor die and having electrical components embodied therein, wherein the electrical components include at least one discrete passive component. The integrated circuit system also includes at least one electrical path coupling the first active layer and the second pre-fabricated layer.
Abstract:
A pipeline analog to digital converter comprising: a first analog to digital converter for determining a first part of an analog to digital conversion result, and for forming a residue signal; an amplifier for amplifying the residue signal, the amplifier including at least one offset sampling capacitor for sampling an offset of the amplifier, wherein at least one resistance is associated with the at least one capacitor so as to form a filter, and the at least one resistor is variable such that an amplifier bandwidth can be switched between a first bandwidth and a second bandwidth less than the first bandwidth during sampling of the offset.
Abstract:
A analog to digital converter, comprising: an input for receiving an input signal to be digitised; a first converter core for performing a first part of an analog to digital conversion, and for outputting a first digital result; a first residue calculator for calculating a first residue as a difference between the input signal and the first digital result; a second converter core for performing a second part of the analog to digital conversion by converting the first residue; wherein at least one of the first and second converter cores comprises at least three analog to digital conversion engines and a controller for controlling the operation of the engines such that the engines collaborate to perform a successive approximation search, and wherein a plurality of bits can be determined during a single trial step of the successive approximation search.