Abstract:
Even in case of conductive particles being clamped between stepped sections of substrate electrodes and electrode terminals, conductive particles sandwiched between each main surface of the substrate electrodes and electrode terminals are sufficiently compressed, ensuring electrical conduction. An electronic component is connected to a circuit substrate via an anisotropic conductive adhesive agent, on respective edge-side areas of substrate electrodes of the circuit substrate and electrode terminals of the electronic component, stepped sections are formed and abutted, conductive particles are sandwiched between each main surface and stepped sections of the substrate electrodes and electrode terminals; the conductive particles and stepped sections satisfy formula, a+b+c≦0.8 D (1), wherein a is height of the stepped section of the electrode terminals, b is height of the stepped section of the substrate electrodes, c is gap distance between each stepped sections and D is diameter of conductive particles.
Abstract:
A first anisotropic conductive film 1A or a second anisotropic conductive film 1B has a first insulating resin layer 2 and a second insulating resin layer 3. The first insulating resin layer 2 is formed of a photopolymerized resin, and the second insulating resin layer 3 is formed of a polymerizable resin. Conductive particles 10 are disposed in a single layer on a surface of the first insulating resin layer 2 on a side of the second insulating resin layer 3. The first anisotropic conductive film further has a third insulating resin layer 4 formed of a polymerizable resin, and the second anisotropic conductive film 1B has an intermediate insulating resin layer 6. The intermediate insulating resin layer 6 is formed of a resin containing no polymerization initiator, and is in contact with the conductive particles 10. These anisotropic conductive films have favorable connection reliability.
Abstract:
An alignment mark at a position that overlaps an area in which an anisotropic conductive film is pasted, and to accurately perform alignment using an image captured by a camera. An alignment method in which an electronic component is mounted on the obverse surface of a transparent substrate with a conductive adhesive agent interposed therebetween, a substrate-side alignment mark and a component-side alignment mark are adjusted from the captured image, and the position at which the electronic component is mounted on the transparent substrate is aligned, wherein in the conductive adhesive agent, conductive particles are in a regular arrangement as viewed from a planar perspective, and in the captured image, the outside edges of the alignment marks exposed between the conductive particles are intermittently visible as line segments (S) along the imaginary line segments of the outside edges of the alignment mark.
Abstract:
Even in case of conductive particles being clamped between stepped sections of substrate electrodes and electrode terminals, conductive particles sandwiched between each main surface of the substrate electrodes and electrode terminals are sufficiently compressed, ensuring electrical conduction. An electronic component is connected to a circuit substrate via an anisotropic conductive adhesive agent, on respective edge-side areas of substrate electrodes of the circuit substrate and electrode terminals of the electronic component, stepped sections are formed and abutted, conductive particles are sandwiched between each main surface and stepped sections of the substrate electrodes and electrode terminals; the conductive particles and stepped sections satisfy formula, a+b+c≦0.8 D (1), wherein a is height of the stepped section of the electrode terminals, b is height of the stepped section of the substrate electrodes, c is gap distance between each stepped sections and D is diameter of conductive particles.
Abstract translation:即使在基板电极和电极端子的台阶部之间夹着导电粒子的情况下,夹在基板电极的每个主表面和电极端子之间的导电颗粒被充分地压缩,从而确保导电。 电子部件通过各向异性导电粘合剂在电路基板的基板电极的各个边缘侧区域和电子部件的电极端子上连接到电路基板,台阶部形成并抵接,导电粒子夹在每个 基板电极和电极端子的主表面和阶梯部分; 导电粒子和阶梯部分满足公式a + b +c≤0.8D(1)其中a是电极端子的阶梯部分的高度,b是基板电极的阶梯部分的高度,c是间隙距离 在每个阶梯部分之间,D是导电颗粒的直径。
Abstract:
An anisotropic conductive film, capable of connecting a terminal formed on a substrate having a wavy surface such as a ceramic module substrate with conduction characteristics stably maintained, includes an insulating adhesive layer, and conductive particles regularly arranged in the insulating adhesive layer as viewed in a plan view. The conductive particle diameter is 10 μm or more, and the thickness of the film is 1 or more times and 3.5 or less times the conductive particle diameter. The variation range of the conductive particles in the film thickness direction is less than 10% of the conductive particle diameter.
Abstract:
An anisotropic conductive film includes a conductive particle array layer in which a plurality of conductive particles are arrayed in a prescribed manner and held in an insulating resin layer. The anisotropic conductive film has a direction in which a thickness distribution, around the individual conductive particle, of the insulating resin layer holding the array of the conductive particles is asymmetric with respect to the conductive particle. The direction in which the thickness distribution is asymmetric is aligned in the same direction in the plurality of conductive particles. When an electronic component is mounted using this anisotropic conductive film, short circuits and conductive failure can be reduced.
Abstract:
An anisotropic conductive film which can be used as a standard product as long as no problems arise in anisotropic conductive connections, even in a case where omissions are present in a prescribed disposition of conductive particles, includes a regular disposition region in which conductive particles are disposed regularly in an insulating resin binder, and has a length of 5 m or greater. A standard region including no sections with more than a prescribed number of consecutive omissions in conductive particles is present in the regular disposition region over a prescribed width in a short-side direction of the anisotropic conductive film and at least a prescribed length in a long-side direction of the anisotropic conductive film.
Abstract:
An anisotropic electrically conductive film has a structure wherein the electrically conductive particles are disposed on or near the surface of an electrically insulating adhesive base layer, or a structure wherein an electrically insulating adhesive base layer and an electrically insulating adhesive cover layer are laminated together and the electrically conductive particles are disposed near the interface therebetween. Electrically conductive particle groups configured from two or more electrically conductive particles are disposed in a lattice point region of a planar lattice pattern. A preferred lattice point region is a circle centered on a lattice point. A radius of the circle is not less than two times and not more than seven times the average particle diameter of the electrically conductive particles.
Abstract:
An anisotropic conductive film 1A includes a conductive particle array layer 4 in which a plurality of conductive particles 2 are arrayed in a prescribed manner and held in an insulating resin layer The anisotropic conductive film 1A has a direction in which a thick distribution, around the individual conductive particle, of the insulating resin layer 3 holding the array of the conductive particles 2 is asymmetric with respect to the conductive particle 2. The direction in which the thickness distribution is asymmetric is aligned in the same direction in the plurality of conductive particles. When an electronic component is mounted using this anisotropic conductive film 1A, short circuits and conductive failure can be reduced.
Abstract:
To reduce substrate warp occurring after connection an anisotropic conductive film is used. An anisotropic conductive film has: a first insulating adhesive layer; a second insulating adhesive layer; and a conductive particle-containing layer sandwiched by the first insulating adhesive layer and the second insulating adhesive layer and having conductive particles contained in an insulating adhesive, wherein air bubbles are contained between the conductive particle-containing layer and the first insulating adhesive layer, and, the conductive particle-containing layer, a portion thereof below the conductive particles and in contact with the second insulating adhesive layer has a lower degree of cure than other portions thereof.