Abstract:
In exemplary aspects of the disclosure, magnetic coupling problems in a power amplifier/antenna circuit may be address by using a self-shielded RF inductor mounted over the PA output match inductor embedded in the substrate to offer full RF isolation of both PA output match inductors (self-shielded and embedded) or using a self-shielded RF inductor mounted over the PA output match inductor embedded in the substrate along with a component level conformal shield around the self-shielded inductor on the assembly structure.
Abstract:
Methods and apparatus for formation of a semiconductor substrate with photoactive dielectric material, embedded traces, a padless skip via extending through two dielectric layers, and a coreless package are provided. In one embodiment, a method for forming a core having a copper layer; laminating the copper layer a photoactive dielectric layer; forming a plurality of trace patterns in the photoactive dielectric layer; plating the plurality of trace patterns to form a plurality of traces; forming an insulating dielectric layer on the photoactive dielectric layer; forming a via through the insulating dielectric layer and the photoactive dielectric layer; forming additional routing patterns on the insulating dielectric layer; removing the core; and applying a solder mask.
Abstract:
Some features pertain to a package that includes a redistribution portion, a first die coupled to the redistribution portion, a core layer coupled to the redistribution portion, and an encapsulation layer encapsulating the first die and the core layer. The redistribution portion includes a first dielectric layer. The core layer has a higher Young's Modulus than the encapsulation layer. In some implementations, the core layer includes a glass fiber (e.g., core layer is a glass reinforced dielectric layer). In some implementations, the core layer has a Young's Modulus of about at least 15 gigapascals (Gpa). In some implementations, the first die includes a front side and a back side, where the front side of the first die is coupled to the redistribution portion. In some implementations, the first dielectric layer is a photo imageable dielectric (PID) layer.
Abstract:
To achieve a package-on-package having an advantageously reduced height, a first package substrate has a window sized to receive a second package die. The first package substrate interconnects to the second package substrate through a plurality of package-to-package interconnects such that the first and second substrates are separated by a gap. The second package die has a thickness greater than the gap such that the second package die is at least partially disposed within the first package substrate's window.
Abstract:
A semiconductor package according to some examples of the disclosure may include a base with a first redistribution layer on one side, first and second side by side die attached to the base on an opposite side from the first redistribution layer, an interposer attached to active sides of the first and second die to provide an interconnection between the first and second die, a plurality of die vias extending from the first and second die to a second redistribution layer on a surface of the package opposite the first redistribution layer, and a plurality of package vias extending through the package between the first and second redistribution layers.
Abstract:
Flexible film electrical-test substrates with at least one conductive contact post for integrated circuit (IC) bump(s) electrical testing, and related methods and testing apparatuses are disclosed. The backside structure of an electrical-test substrate comprises a flexible dielectric film structure. One or more fine-pitched conductive coupling posts are formed on conductive pads disposed on a front side of the flexible dielectric film structure through a fabrication process. A first pitch of the conductive coupling post(s) in the flexible dielectric film structure is provided to be the same or substantially the same as a second pitch of one or more bumps in an IC, such as die or interposer (e.g., forty (40) micrometers (μm) or less). This allows the conductive coupling post(s) to be placed into mechanical contact with at least one bump of the IC, point-by-point, during an electrical test to electrically testing of the IC.
Abstract:
Some implementations provide a substrate that includes several traces, a solder resist layer covering the several traces, and a testing pad coupled to a trace from the several traces. The testing pad is at least partially exposed and at least partially free of the solder resist layer when a chip is coupled to the substrate. In some implementations, the several traces have a pitch that is 100 microns (nm) or less. In some implementations, the substrate is a package substrate. In some implementations, the package substrate is a package substrate on which a thermal compression flip chip is mounted during an assembly process. In some implementations, the testing pad is free of a direct connection with a bonding component of the chip when the chip is coupled to the substrate. In some implementations, the bonding component is one of a solder ball.
Abstract:
Some implementations provide a semiconductor device that includes a die, an under bump metallization (UBM) structure coupled to the die, and a barrier layer. The UBM structure has a first oxide property. The barrier layer has a second oxide property that is more resistant to oxide removal from a flux material than the first oxide property of the UBM structure. The barrier layer includes a top portion, a bottom portion and a side portion. The top portion is coupled to the UBM structure, and the side portion is substantially oxidized.
Abstract:
Antenna modules employing a package substrate with a vertically-integrated patch antenna(s), and related fabrication methods. The antenna module includes a radio-frequency (RF) IC (RFIC) package that includes one or more RFICs for supporting RF communications and a package substrate that includes one or more metallization layers with formed metal interconnects for routing of signals between the RFICs and an antenna(s) in the package substrate. The package substrate includes one or more patch antennas that are planar-shaped and vertically integrated in a plurality of metallization layers in the package substrate, behaving electromagnetically as a patch antenna. In this manner, the patch antenna(s) can be formed as a vertically-integrated structure in the package substrate with fabrication methods used for fabricating metal interconnects and vias (e.g., a micro via fabrication process) in package substrates.
Abstract:
An antenna-in-package (AiP) module is described. The AiP module includes an antenna sub-module. The antenna sub-module is composed of a first package substrate including an antenna side surface having a first group of antennas placed along a first portion of the antenna side surface and a second group of antennas placed along a second portion of the antenna side surface. The first package substrate is composed of a non-linear portion between the first group of antennas and the second group of antennas. The AiP module includes an active circuit sub-module placed on an active side surface of the first package substrate opposite the first group of antennas or the second group of antennas on the antenna side surface of the first package substrate. The active circuit includes a power management (PM) chip and a radio frequency (RF) chip coupled to a second package substrate coupled to the first package substrate.