Abstract:
A chip package includes a chip, a dielectric bonding layer, a carrier, and a redistribution layer. The chip has a substrate, a conductive pad, and a protection layer. The dielectric bonding layer is located on the protection layer and between the carrier and the protection layer. The carrier, the dielectric bonding layer, and the protection layer have a communicated through hole configured to expose the conductive pad. The redistribution layer includes a connection portion and a passive component portion. The connection portion is located on the conductive pad, the sidewall of the through hole, and a surface of the carrier facing away from the dielectric bonding layer. The passive component portion is located on the surface of the carrier, and an end of the passive component portion is connected to the connection portion that is on the surface of the carrier.
Abstract:
A chip package includes a semiconductor chip, an interposer, a polymer adhesive supporting layer, a redistribution layer and a packaging layer. The semiconductor chip has a sensor device and a conductive pad electrically connected to the sensing device, and the interposer is disposed on the semiconductor chip. The interposer has a trench and a through hole, which the trench exposes a portion of the sensing device, and the through hole exposes the conductive pad. The polymer adhesive supporting layer is interposed between the semiconductor chip and the interposer, and the redistribution layer is disposed on the interposer and in the through hole to be electrically connected to the conductive pad. The packaging layer covers the interposer and the redistribution layer, which the packaging layer has an opening exposing the trench.
Abstract:
A manufacturing method of a semiconductor structure includes the following steps. A wafer structure having a silicon substrate and a protection layer is provided. An electrical pad on the protection layer is exposed through the concave region of the silicon substrate. An isolation layer is formed on the sidewall of the silicon substrate surrounding the concave region and a surface of the silicon substrate facing away from the protection layer. A redistribution layer is formed on the isolation layer and the electrical pad. A passivation layer is formed on the redistribution layer. The passivation layer is patterned to form a first opening therein. A first conductive layer is formed on the redistribution layer exposed through the first opening. A conductive structure is arranged in the first opening, such that the conductive structure is in electrical contact with the first conductive layer.
Abstract:
A fabrication method of a semiconductor stack structure mainly includes: singulating a wafer of a first specification into a plurality of chips; rearranging the chips into a second specification of a wafer so as to stack the chips on a substrate of the second specification through a plurality of blocks; forming a redistribution layer on the chips; and performing a cutting process to obtain a plurality of semiconductor stack structures. Therefore, the present invention allows a wafer of a new specification to be processed by using conventional equipment without the need of new factory buildings or equipment. As such, chip packages can be timely supplied to meet the replacement speed of electronic products.
Abstract:
An embodiment of the invention provides a chip package which includes: a semiconductor substrate having a first surface and a second surface; a device region disposed in the semiconductor substrate; a dielectric layer disposed on the first surface of the semiconductor substrate; a conducting pad structure disposed in the dielectric layer and electrically connected to the device region, a carrier substrate disposed on the dielectric layer; and a conducting structure disposed in a bottom surface of the carrier substrate and electrically contacting with the conducting pad structure.
Abstract:
An embodiment of the present invention provides a manufacturing method of a chip package structure including: providing a first substrate having a plurality of predetermined scribe lines defined thereon, wherein the predetermined scribe lines define a plurality of device regions; bonding a second substrate to the first substrate, wherein a spacing layer is disposed therebetween and has a plurality of chip support rings located in the device regions respectively and a cutting support structure located on peripheries of the chip support rings, and the spacing layer has a gap pattern separating the cutting support structure from the chip support rings; and cutting the first substrate and the second substrate to form a plurality of chip packages. Another embodiment of the present invention provides a chip package structure.
Abstract:
An embodiment of the disclosure provides a chip package which includes: a semiconductor substrate having a first surface and a second surface; a first recess extending from the first surface towards the second surface; a second recess extending from a bottom of the first recess towards the second surface, wherein a sidewall and the bottom of the first recess and a second sidewall and a second bottom of the second recess together form an exterior side surface of the semiconductor substrate; a wire layer disposed on the first surface and extending into the first recess and/or the second recess; an insulating layer located between the wire layer and the semiconductor substrate; a chip disposed on the first surface; and a conducting structure disposed between the chip and the first surface.
Abstract:
An embodiment of the invention provides a chip package which includes: a first chip; a second chip disposed on the first chip; a hole extending from a surface of the first chip towards the second chip; a conducting layer disposed on the surface of the first chip and extending into the hole and electrically connected to a conducting region or a doped region in the first chip; and a support bulk disposed between the first chip and the second chip, wherein the support bulk substantially and/or completely covers a bottom of the hole.
Abstract:
A chip package including a substrate that has a first surface and a second surface opposite thereto is provided. The substrate includes a chip region and a scribe line region that extends along the edge of the chip region. The chip package further includes a dielectric layer disposed on the first surface of the substrate. The dielectric layer corresponding to the scribe line region has a through groove that extends along the extending direction of the scribe line region. A method of forming the chip package is also provided.
Abstract:
This present invention provides a chip scale sensing chip package, comprising a sensing chip having a first top surface and a first bottom surface opposite to each other, a touch plate having a second top surface and a second bottom surface opposite to each other, formed above the sensing chip, and a color layer, sandwiched between the sensing chip and the touch plate, wherein the sensing chip comprises a sensing device formed nearby the first top surface and a plurality of conductive pads formed nearby the first top surface and adjacent to the sensing device, a plurality of through silicon vias exposing their corresponding conductive pads formed on the first bottom surface, a plurality of conductive structures formed on the first bottom surface, and a re-distribution layer overlaying the first bottom surface and each through silicon via to electrically connect each conductive pad and each conductive structure.