Abstract:
The object is to provide a resin composition for a printed circuit board capable of realizing a printed circuit board that not only has heat resistance and flame retardancy but also is excellent in heat resistance after moisture absorption. The resin composition is a resin composition for a printed circuit board containing a cyanate ester compound (A) obtained by cyanation of a naphthol-dihydroxynaphthalene aralkyl resin or a dihydroxynaphthalene aralkyl resin, and an epoxy resin (B).
Abstract:
The present invention relates to fluorescent, benzotriazole-containing dye compounds, which possess high processability, desirable optical characteristics and good photostability, while suppressing the formation of a precipitate, and to dye polymers comprising the same. The present invention further relates to a wavelength-converting encapsulant composition comprising said dye polymer and to a photovoltaic module, which comprises a layer comprising said wavelength-converting encapsulant. The polymer fluorescent benzotriazole-containing dye compound is represented by general formula (I): where the variables are defined in the specification.
Abstract:
An ion exchange membrane is provided. The ion exchange membrane includes a reaction product of a polymer and a cross-linking reagent. The polymer includes a first repeat unit, and a second repeat unit. In particular, the first repeat unit is and, the second repeat unit is wherein R+ is A− is F−, Cl−, Br−, I−, OH−, HCO3−, HSO4−, SbF6−, BF4−, H2PO4−, H2PO3−, or H2PO2−; X is CH2iYCH2j, i and j are independently 0, or an integer from 1 to 4; Y is —O—, —S—, —CH2—, or —NH—; R1 is independently C1-8 alkyl group; and, R2 and R3 are hydrogen, or independently C1-8 alkyl group; and, the cross-linking reagent is a compound having at least two imide groups.
Abstract:
A polymer, an organic layer composition, and a method of forming patterns, the polymer including a structural unit represented by Chemical Formula 1:
Abstract:
Disclosed herein are compounds and compositions useful for reducing the risk of infection. In particular, disclosed herein are mandelic acid condensation polymers, compositions comprising such compounds, processes for producing such compounds, and methods of using such compounds.
Abstract:
A family of carboxylic acid group containing fluorene/fluorenon copolymers is disclosed as binders of silicon particles in the fabrication of negative electrodes for use with lithium ion batteries. These binders enable the use of silicon as an electrode material as they significantly improve the cycle-ability of silicon by preventing electrode degradation over time. In particular, these polymers, which become conductive on first charge, bind to the silicon particles of the electrode, are flexible so as to better accommodate the expansion and contraction of the electrode during charge/discharge, and being conductive promote the flow battery current.
Abstract:
The present invention relates to a polymer possessing a linear backbone selected from the homopolymers belonging to the family of polyfluorenes, polycarbazoles, polyanilines, polyphenylenes, polyisothionaphthenes, polyacetylenes, polyphenylene vinylenes, and copolymers thereof, said backbone bearing at least one side group possessing at least one nitroxide function.It also relates to an electrode material, an electrode and a lithium secondary battery obtained from such a polymer.
Abstract:
A polymer comprising a first repeat unit of formula (I), wherein each Ar is independently selected from optionally substituted aryl or heteroaryl and the group of formula (I) is present in a molar ratio of less than or equal to 10%, and, optionally, a second, optionally substituted repeat unit having a single nitrogen atom in its backbone of formula —Ar—N(Ar)—Ar— in a molar ratio of no greater than 5%.
Abstract:
A composition and method of forming a composition including a compound including a poly(phenylene) backbone represented by the following formula: wherein each of R1, R2 and R3 may be the same or different and is H or an unsubstituted or inertly-substituted aromatic moiety; wherein Ar1 is an unsubstituted or inertly-substituted aromatic moiety; wherein R4 is an alkylene, perfluoroalkyl, polyethylene glycol, or polypropylene glycol moiety; wherein each of R6, R7, R8, R9, R10 and R11 is H or a monovalent hydrocarbon group including two to 18 carbon atoms, with the proviso that each R6, R7, R8, R9, R10 and R11 cannot be H; and wherein each of Y6, Y7, Y8, Y9, Y10 and Y11 may be the same or different and is H or a functional group are disclosed. The composition can be used as anion-exchange membranes and as an electrode binder material in anion exchange membrane fuel cells.
Abstract:
The present disclosure provides novel poly(phenylene ethynylene) (PPE) compounds, methods for synthesizing these compounds, and materials and substances incorporating these compounds. The various PPEs show antibacterial, antiviral and antifungal activity.