Abstract:
To suppress the reduction in reliability of a resin-sealed semiconductor device. A first cap (member) and a second cap (member) with a cavity (space formation portion) are superimposed and bonded together to form a sealed space. A semiconductor including a sensor chip (semiconductor chip) and wires inside the space is manufactured in the following way. In a sealing step of sealing a joint part between the caps, a sealing member is formed of resin such that an entirety of an upper surface of the second cap and an entirety of a lower surface of the first cap are respectively exposed. Thus, in the sealing step, the pressure acting in the direction of crushing the second cap can be decreased.
Abstract:
Technique capable of achieving reliability improvement of a semiconductor device even if temperature rising of an operation guarantee temperature of the semiconductor device is performed is provided. Gap portions are provided among a plurality of pads, and a glass coat composed of, for example, a silicon oxide film or a silicon nitride film is embedded in the gap portions. The glass coat is provided in order to secure electrical insulation among the pads, and coats outer edge portions of the pads. Trenches are formed so as to be adjacent to regions, which are coated with the glass coat, of the outer edge portions of the pads.
Abstract:
A semiconductor device which uses a semiconductor chip originally designed for flip chip bonding and is assembled by a wire bonding process to reduce the cost of assembling a semiconductor product. A second electrode pad group and a fourth electrode pad group are located in the central area of the semiconductor chip and a first electrode pad group and a third electrode pad group are located adjacently to the two long sides of the semiconductor chip. The electrode pads of each electrode group are electrically coupled with a plurality of conductive wires. The layouts of the wiring layers formed in an interconnection substrate are modified so that the wire-bonded semiconductor device is the same as a flip-chip-bonded semiconductor device in terms of the positions of input/output signals.
Abstract:
Disclosed is a semiconductor device that is capable of handling multiple different high-frequency contactless communication modes and that is formed by a multi-chip structure. A first semiconductor chip, which performs interface control of high-frequency contactless communication and data processing of communications data, is mounted on a wiring board; and a second semiconductor chip, which performs another data processing of the communication data, is mounted on the first semiconductor chip. In this case, transmission pads in the first semiconductor chip are arranged at positions farther from a periphery of the chip than those of receiving pads, and the second semiconductor chip is mounted by being biased on the first semiconductor chip so as to keep away the transmission pads.
Abstract:
A system on a chip (SOC) includes a physical interface having first and second sets of interface pads. Interface pads from the first set are interleaved with interface pads from the second set. Additionally, the SOC is arranged for operation with a superset die having first and second personalities and has a physical interface with interface pads. The SOC uses a first number of interface pads in the first personality and a second number of interface pads in the second personality, where the first number is greater than the second number. A switch switches signals between the superset die and the physical interface and, in the second personality, switches signals to the physical interface so that interface pads in the second number of interface pads are interleaved with interface pads not in use in the second personality.
Abstract:
The semiconductor device has the CSP structure, and includes: a plurality of electrode pads formed on a semiconductor integrated circuit in order to input/output signals from/to exterior; solder bumps for making external lead electrodes; and rewiring. The solder bumps are arranged in two rows along the periphery of the semiconductor device. The electrode pads are arranged inside the outermost solder bumps so as to be interposed between the two rows of solder bumps. Each trace of the rewiring is extended from an electrode pad, and is connected to any one of the outermost solder bumps or any one of the inner solder bumps.
Abstract:
A packaged microelectronic element includes a microelectronic element having a front surface and a plurality of first solid metal posts extending away from the front surface. A substrate has a major surface and a plurality of conductive elements exposed at the major surface and joined to the first solid metal posts. In particular examples, the conductive elements can be bond pads or can be second posts having top surfaces and edge surfaces extending at substantial angles away therefrom. Each first solid metal post includes a base region adjacent the microelectronic element and a tip region remote from the microelectronic element, the base region and tip region having respective concave circumferential surfaces. Each first solid metal post has a horizontal dimension which is a first function of vertical location in the base region and which is a second function of vertical location in the tip region.
Abstract:
To suppress the reduction in reliability of a resin-sealed semiconductor device. A first cap (member) and a second cap (member) with a cavity (space formation portion) are superimposed and bonded together to form a sealed space. A semiconductor including a sensor chip (semiconductor chip) and wires inside the space is manufactured in the following way. In a sealing step of sealing a joint part between the caps, a sealing member is formed of resin such that an entirety of an upper surface of the second cap and an entirety of a lower surface of the first cap are respectively exposed. Thus, in the sealing step, the pressure acting in the direction of crushing the second cap can be decreased.
Abstract:
A universal IO unit applied to a chip or an integrated circuit is provided. The universal IO unit includes a power pad and a plurality of signal pads for providing different functions. According to functional requirements of the universal IO unit, the pad power is selectively connected to an electric wire to couple to a predetermined voltage, and each of the signal pads is also selectively connected to a signal wire to transceive signals.
Abstract:
A FET for driving an electric motor includes a source electrode. The source electrode has main electrode surfaces to which bonding wires, through which a drive current for an electric motor passes, are joined, and inspection electrode surfaces that are arranged so as to be independent of and apart from the main electrode surfaces. The inspection electrode surfaces are provided so as to contact a probe of an inspection device that performs an inspection of the FET 3.