摘要:
A MESFET including a Schottky top gate which extends across the channel region between the source and drain regions and beyond two opposed sides of the dielectric isolation onto the substrate in which the device is built. The portion of the top gate which extends across the channel is disconnected from the portion which extends across the substrate beyond the dielectric isolation. This may result from the removal of the gate material at the dielectric isolation or by the portion of the gate material which is on the dielectric isolation being vertically displaced and disconnected or discontinous from the portion of the gate material which extends across the channel and that portion which extends across the substrate.
摘要:
A method of forming a self aligned guard ring surrounding a schottky barrier diode device without requiring an enlargement of the final schottky barrier device. The method involves creating an overhanging opening in a insulator layer overlying a semiconductor body to expose the schottky contact area on the surface of the semiconductor body, depositing a diffusion barrier material such as molybdenum in the opening, the deposit being of the same size as the smallest part of the overhanging opening so that a guard ring can be formed from a vapor by diffusion around the deposited barrier material.
摘要:
A planar integrated circuit structure having a dielectrically isolated Schottky Barrier contact.The structure has pockets of silicon surrounded by isolating regions of silicon dioxide extending from a planar surface, the silicon dioxide regions and silicon pockets being substantially coplanar at said surface. A layer of dielectric material, such as silicon nitride or a composite of silicon nitride over silicon dioxide, covers the surface. There is at least one opening extending through the dielectric layer to a coincident silicon pocket; the opening has larger lateral dimensions than said pocket so as to expose the pocket and a portion of the silicon dioxide region surrounding the pocket. A metallic layer in this opening forms a Schottky Barrier contact with the exposed silicon.
摘要:
According to one embodiment, a semiconductor device include first to third electrode, a semiconductor member, a first conductive member, and a first insulating member. A second insulating region of the first insulating member includes a first face facing the third partial region of the first semiconductor region. The third insulating region of the first insulating member includes a second face facing the third partial region of the first semiconductor region. The first face includes a first end on a side of the first electrode in the first direction. The second face includes a second end on a side of the second electrode in the first direction. A second position of the second end in the second direction is different from a first position of the first end in the second direction.
摘要:
Semiconductor devices and associated fabrication methods are disclosed. In one disclosed approach a process for forming a semiconductor device is provided. The process includes: implanting a first region of semiconductor material using a first channeled implant with a first conductivity type; and implanting, after the first channeled implant, a second region of semiconductor material using a second channeled implant with a second conductivity type. The first channeled implant disrupts a crystal structure of the first region of semiconductor material and does not disrupt a crystal structure of the second region of semiconductor material.
摘要:
A transistor having at least one passivated Schottky barrier to a channel includes an insulated gate structure on a p-type substrate in which the channel is located beneath the insulated gate structure. The channel and the insulated gate structure define a first and second undercut void regions that extend underneath the insulated gate structure toward the channel from a first and a second side of the insulated gate structure, respectively. A passivation layer is included on at least one exposed sidewall surface of the channel and metal source and drain terminals are located on respective first and second sides of the channel, including on the passivation layer and within the undercut void regions beneath the insulated gate structure. At least one of the metal source and drain terminals comprises a metal that has a work function near a valence band of the p-type substrate.
摘要:
A semiconductor device, including: a first layer including first transistors, the first transistors are interconnected by at least one metal layer including copper or aluminum; a second layer including second transistors, the first layer is overlaid by the second layer, where the second layer includes a plurality of through layer vias having a diameter of less than 200 nm, where the second transistors include a source contact, the source contact including a silicide, and where the silicide has a sheet resistance of less than 15 ohm/sq.
摘要:
The present invention discloses a preparation method of a germanium-based Schottky junction, comprising, cleaning a surface of N-type germanium-based substrate, then depositing a layer of CeO2 on the surface, and further depositing a layer of metal. The stability Ce—O—Ge bonds can be formed at the interface after rare earth oxides CeO2 are in contact with the germanium substrate, and this is beneficial to reduce the interface state density, improve the quality of the interface, and reduce the MIGS and suppress Fermi-level pinning. Meanwhile, the tunneling resistance introduced by CeO2 between the metal and the germanium substrate is smaller relative to the case of Si3N4, Al2O3, Ge3N4 or the like. In view of the excellent surface characteristics and small conduction band offset relative to the germanium substrate, interposing of the CeO2 dielectric layer is applicable to the preparation the germanium-based Schottky junction having a low resistivity.
摘要:
A tunable breakdown voltage RF MESFET and/or MOSFET and methods of manufacture are disclosed. The method includes forming a first line and a second line on an underlying gate dielectric material. The second line has a width tuned to a breakdown voltage. The method further includes forming sidewall spacers on sidewalls of the first and second line such that the space between first and second line is pinched-off by the dielectric spacers. The method further includes forming source and drain regions adjacent outer edges of the first line and the second line, and removing at least the second line to form an opening between the sidewall spacers of the second line and to expose the underlying gate dielectric material. The method further includes depositing a layer of material on the underlying gate dielectric material within the opening, and forming contacts to a gate structure and the source and drain regions.
摘要:
A field-effect semiconductor device having a semiconductor body with a main surface is provided. The semiconductor body includes, in a vertical cross-section substantially orthogonal to the main surface, a drift layer of a first conductivity type, a semiconductor mesa of the first conductivity type adjoining the drift layer, substantially extending to the main surface and having two side walls, and two second semiconductor regions of a second conductivity type arranged next to the semiconductor mesa. Each of the two second semiconductor regions forms a pn-junction at least with the drift layer. A rectifying junction is formed at least at one of the two side walls of the mesa. Further, a method for producing a heterojunction semiconductor device is provided.