摘要:
The present invention provides an X-ray detector assembly and a fabrication method, where the X-ray detector assembly comprises a scintillator material disposed on a detector matrix array disposed on a detector substrate; an encapsulating coating disposed on the scintillator material; a moisture resistant cover disposed over the detector substrate and the encapsulating coating, and an adhesive material disposed between the detector substrate and the moisture resistant cover so as to form a moisture vapor barrier. The adhesive material is disposed so that it is not in contact with the encapsulating coating. The fabrication method of the X-ray detector assembly includes the steps of disposing the encapsulating coating on the scintillator material and a portion of the detector substrate and removing the encapsulating coating from the portion of the detector substrate.
摘要:
The present invention provides an X-ray detector assembly and a fabrication method, where the X-ray detector assembly comprises a scintillator material disposed on a detector matrix array disposed on a detector substrate; an encapsulating coating disposed on the scintillator material; a moisture resistant cover disposed over the detector substrate and the encapsulating coating, and an adhesive material disposed between the detector substrate and the moisture resistant cover so as to form a moisture vapor barrier. The adhesive material is disposed so that it is not in contact with the encapsulating coating. The fabrication method of the X-ray detector assembly includes the steps of disposing the encapsulating coating on the scintillator material and a portion of the detector substrate and removing the encapsulating coating from the portion of the detector substrate.
摘要:
A low dielectric constant printed circuit board includes: a low dielectric constant porous polymer layer having holes therethrough, the porous layer having pores; and a patterned metallization layer over surfaces of the low dielectric constant porous polymer layer and surfaces of the holes, the patterned metallization layer not significantly protruding into the pores of the porous layer.
摘要:
One method for packaging at least one circuit chip includes: providing an interconnect layer including insulative material having a first side and a second side, initial metallization patterned on second side metallized portions of the second side and not on second side non-metallized portions of the second side, at least one substrate via extending from the first side to one of the second side metallized portions, and at least one chip via extending from the first side to one of the second side non-metallized portions; positioning the at least one circuit chip on the second side with at least one chip pad of the at least one circuit chip being aligned with the at least one chip via; and patterning connection metallization on selected portions of the first side of the interconnect layer and in the vias so as to extend to the at least one second side metallized portion and to the at least one chip pad. In related embodiments vias are pre-metallized and coupled to chip pads of the circuit chips by an electrically conductive binder. Thin film passive components and multilayer interconnections can additionally be incorporated into the package.
摘要:
A circuit module includes at least one high temperature semiconductor chip having chip pads; a substrate having substrate metallization, the chip pads and the substrate metallization being substantially planar; and a deposited flexible pattern of electrical conductors capable of withstanding high temperatures and coupling selected chip pads and portions of the substrate metallization. The deposited flexible pattern of electrical conductors includes a plurality of integral interconnect segments, at least one of the integral interconnect segments including first and second leg portions and a shelf portion with the shelf portion being spaced apart from the at least one semiconductor chip and substrate and being coupled by the first leg portion to a selected chip pad and by the second leg portion to a selected portion of the substrate metallization.
摘要:
Top die pads are electrically relocated by forming holes through a semiconductor wafer between device active regions. An electrically insulating layer is formed over all exposed surfaces of the wafer, including within the holes, and openings are made in the insulating layer for access to the top interconnection pads. The wafer and holes are metallized and patterned to form bottom interconnection pads electrically connected to corresponding top interconnection pads by metallization extending within the holes. A dicing saw having a kerf width less than the diameter of the holes is employed to separate the individual devices. For accurate position alignment of repatterned die, an alignment structure, such as projecting pins or an egg crate structure, engages the die, and alignment pads can be patterned on the die.
摘要:
A flexible film interface includes a flexible film; flexible material attached to a portion of the flexible film; surface metallization on the flexible material, the flexible film having at least one via extending therethrough to the surface metallization; and a floating pad structure including floating pad metallization patterned over the flexible material and the surface metallization, a first portion of the floating pad metallization forming a central pad and a second portion of the floating pad metallization forming at least one extension from the central pad and extending into the at least one via.
摘要:
A method for fabricating a thin film resistor comprises applying a tantalum nitride layer over a dielectric layer, applying a metallization layer over the tantalum nitride layer, and patterning the metallization layer with a first portion of the metallization layer situated apart from a second portion of the metallization layer and both the first and second portions being at least partially situated on the tantalum nitride layer. In one embodiment, after patterning the metallization layer, the resistance value between the first and second portions of the metallization layer is determined and compared to a predetermined resistance value, and at least one of the first and second portions is trimmed to obtain a modified resistance value between the first and second portions that is closer to the predetermined resistance value than the determined resistance value.
摘要:
A method for fabricating a low dielectric constant printed circuit board includes dispersing an additive material in a low dielectric constant porous polymer layer; providing holes through the low dielectric constant porous polymer layer; applying a metallization layer over surfaces of the low dielectric constant porous polymer layer and surfaces of the holes; patterning the metallization layer; and removing the additive material from the low dielectric constant porous polymer layer. The removal of the additive material can be accomplished by sublimation, evaporation, and diffusion.
摘要:
HDI fabrication techniques are employed to form a variety of optical waveguide structures in polymer materials. Adaptive optical connections are formed, taking into account the actual position and orientation of devices which may deviate from the ideal. Structures include solid light-conducting structures, hollow light-conducting structures which are also suitable for conducting cooling fluid, and optical switching devices employing liquid crystal material. A "shrink back" method may be used to form a tunnel in polymer material which is then filled with an uncured polymer material that shrinks upon curing.