摘要:
A voltage supply bypass capacitor for use with a semiconductor integrated circuit chip or module comprising a ferroelectric dielectric having electromechanical properties designed to provide maximum losses at selected frequencies.
摘要:
A process for producing a multi-level semiconductor device having metal interconnections with insulating passivation layers and the product produced thereby. The product and process improve the resistance of the metallization interconnections to extrusion-short electromigration failures by preventing the insulating passivation layers from cracking. The product and process also reduce the level of resistance saturation or the maximum resistance shift caused by electromigration. By replacing wide-line metallization interconnection conducting lines surrounded by insulating passivation layers with two or more narrow, parallel conducting lines having aspect ratios less than or equal to unity with passivation layers located in between, the incidence of passivation cracking and extrusion-short failures is reduced. The process is especially suited for use in multi-level wiring structures in which the wiring levels have diffusion barriers between the wiring levels caused by redundant metallization layers, interlevel connections, or both.
摘要:
A porous SiCOH dielectric film in which the stress change caused by increased tetrahedral strain is minimized by post treatment in unsaturated Hydrocarbon ambient. The p-SiCOH dielectric film has more —(CHx) and less Si—O—H and Si—H bonding moieties. Moreover, a stable pSiOCH dielectric film is provided in which the amount of Si—OH (silanol) and Si—H groups at least within the pores has been reduced by about 90% or less by the post treatment. A p-SiCOH dielectric film is produced that is flexible since the pores include stabilized crosslinking —(CHx)— chains wherein x is 1, 2 or 3 therein. The dielectric film is produced utilizing an annealing step subsequent deposition that includes a gaseous ambient that includes at least one C—C double bond and/or at least one C—C triple bond.
摘要:
A method patterns at least one opening in a low-K insulator layer of a multi-level integrated circuit structure, such that a copper conductor is exposed at the bottom of the opening. The method then lines the sidewalls and the bottom of the opening with a first Tantalum Nitride layer in a first chamber and forms a Tantalum layer on the first Tantalum Nitride layer in the first chamber. Next, sputter etching on the opening is performed in the first chamber, so as to expose the conductor at the bottom of the opening. A second Tantalum Nitride layer is formed on the conductor, the Tantalum layer, and the first Tantalum Nitride layer, again in the first chamber. After the second Tantalum Nitride layer is formed, the methods herein form a flash layer comprising a Platinum group metal on the second Tantalum Nitride layer in a second, different chamber.
摘要:
A method of reducing white bump formation and dielectric cracking under controlled collapse chip connections (C4s). The method comprises fabricating a substrate having a plurality of metallization layers, one or more of the layers is of low k dielectric material. The substrate includes a plurality of attachment pads for the C4s. The fabricating comprises selectively forming at least a portion of the substrate with metal fill having a higher Young's modulus of elasticity than any of the one or more layers of low k dielectric material in portions of the substrate located beneath at least some of the attachment pads.
摘要:
A method of reducing white bump formation and dielectric cracking under controlled collapse chip connections (C4s). The method comprises fabricating a substrate having a plurality of metallization layers, one or more of the layers is of low k dielectric material. The substrate includes a plurality of attachment pads for the C4s. The fabricating comprises selectively forming at least a portion of the substrate with metal fill having a higher Young's modulus of elasticity than any of the one or more layers of low k dielectric material in portions of the substrate located beneath at least some of the attachment pads.
摘要:
Method of manufacturing a structure which includes the steps of providing a structure having an insulator layer with at least one interconnect, forming a sub lithographic template mask over the insulator layer, and selectively etching the insulator layer through the sub lithographic template mask to form sub lithographic features spanning to a sidewall of the plurality of interconnects.
摘要:
A semiconductor product comprises a semiconductor substrate having a top surface and a bottom surface including a semiconductor chip. The semiconductor substrate has a top surface and a perimeter. A barrier is formed in the chip within the perimeter. An Ultra Deep Isolation Trench (UDIT) is cut in the top surface of the chip extending down therein between the perimeter and the barrier. A ILD structure with low-k pSICOH dielectric and hard mask layers is formed over the substrate prior to forming the barrier and the UDIT. The ILD structure interconnection structures can be recessed down to the substrate aside from the UDIT.
摘要:
The present invention provides a method of strengthening a structure, to heal the imperfection of the structure, to reinforce the structure, and thus strengthening the dielectric without compromising the desirable low dielectric constant of the structure. The inventive method includes the steps of providing a semiconductor structure having at least one interconnect structure; dicing the interconnect structure; applying at least one infiltrant into the interconnect structure; and infiltrating the infiltrant to infiltrate into the interconnect structure.
摘要:
The present invention provides a method of strengthening a structure, to heal the imperfection of the structure, to reinforce the structure, and thus strengthening the dielectric without compromising the desirable low dielectric constant of the structure. The inventive method includes the steps of providing a semiconductor structure having at least one interconnect structure; dicing the interconnect structure; applying at least one infiltrant into the interconnect structure; and infiltrating the infiltrant to infiltrate into the interconnect structure.