Abstract:
Technologies for optical communication in a rack cluster in a data center are disclosed. In the illustrative embodiment, a network switch is connected to each of 1,024 sleds by an optical cable that enables communication at a rate of 200 gigabits per second. The optical cable has low loss, allowing for long cable lengths, which in turn allows for connecting to a large number of sleds. The optical cable also has a very high intrinsic bandwidth limit, allowing for the bandwidth to be upgraded without upgrading the optical infrastructure.
Abstract:
Technologies for rack cooling includes monitoring a temperature of a sled mounted in a rack and controlling a cooling system of the rack based on the temperature of the sled. The cooling system includes a cooling fan array, which may be controlled to cool the sled. Additionally, if needed, one or more adjacent cooling fan arrays that are located adjacent to the controlled cooling fan array may be adjusted to provide additional cooling to the sled.
Abstract:
Technologies for blind mating of optical connectors in a rack of a data center are disclosed. In the illustrative embodiment, a sled can be slid into a rack and an optical connector on the sled will blindly mate with a corresponding optical connector on the rack. The illustrative optical connector on the sled includes two guide post receivers which mate with corresponding guide posts on the optical connector on the rack such that, when mated, optical fibers of the optical connector on the rack will be aligned and optically coupled with corresponding optical fibers on the optical connector of the sled.
Abstract:
The disclosure includes, in general, among other aspects, an apparatus having multiple programmable units integrated within a processor. The apparatus has circuitry to map addresses in a single address space to resources within the multiple programmable units where the single address space includes addresses for different ones of the resources in different ones of the multiple programmable units and where there is a one-to-one correspondence between respective addresses in the single address space and resources within the multiple programmable units.
Abstract:
Methods and apparatus for implementing a mode-switch protocol and mechanism for hybrid wireless display system with screencasting and native graphics throwing. Under a Mircast implementation, A Wi-Fi Direct (WFD) link is established between WFD source and sink devices, with the WFD source device configured to operate as a Miracast source that streams Miracast content to a Miracast sink that is configured to operate on the WFD sink device using a Miracast mode. The WFD source and sink devices are respectively configured as a native graphics thrower and catcher and support operation in a native graphics throwing mode, wherein the WFD source devices throw at least one of native graphics commands and native graphics content to the WFD sink device. In response to detection that Miracast content has been selected to be played on the WFD source device, the operating mode is switched to the Miracast mode. The mode may also be automatically or selectively switched back to the native graphics throwing mode. The techniques may also be applied to methods and apparatus that support other types of screencasting techniques and both wireless and wired links.
Abstract:
The disclosure includes, in general, among other aspects, an apparatus having multiple programmable units integrated within a processor. The apparatus has circuitry to map addresses in a single address space to resources within the multiple programmable units where the single address space includes addresses for different ones of the resources in different ones of the multiple programmable units and where there is a one-to-one correspondence between respective addresses in the single address space and resources within the multiple programmable units.