Abstract:
A computer-implemented method of assessing the metal state of an individual by: (1) providing the individual with a wearable device (e.g., eyewear) that includes one or more sensors for assessing the mental state of the individual, (2) using information from one or more of the sensors to assess the mental state of the individual; and (3) informing the individual or a third party of the individual's mental state. In various embodiments, the method further involves using the wearable device to determine one or more environmental factors that are related to the individual's mental state. For example, the method may involve determining (e.g., from one or more images taken using the wearable device) that the individual is frequently in a stressed emotional state when a particular person is present, when the individual is engaged in a particular activity, and/or when the wearer experiences a certain internal or external context.
Abstract:
An electronically controllable pillow is thermally regulated. At least one temperature sensor is configured to communicate temperature measurements. Temperature measurements comprise the internal temperature of a pillow. Temperature measurements are communicated to a processing unit. At least one presence sensor is configured to communicate presence measurements. Presence measurements are configured to indicate the presence of a user employing a pillow. Presence measurements are communicated to a processing unit. At least one transceiver is connected to a processing unit. A transceiver is configured to communicate with at least one remote device. At least one thermal element is activated, based at least in part on, temperature measurements and presence measurements over at least one period of time.
Abstract:
Methods and devices for measuring the size of a body lumen and a method for ablating tissue that uses the measurement to normalize delivery of ablational energy from an expandable operative element to a luminal target of varying circumference are provided. The method includes inserting into the lumen an expandable operative element having circuitry with resistivity or inductance that varies with circumference of the operative element, varying the expansion of the operative element with an expansion medium, measuring the resistivity of the circuitry, and relating the resistivity or inductance to a value for the circumference of the operative element. In some embodiments the sizing circuit includes a conductive elastomer wrapped around the operative element. Other embodiments apply to operative elements that include an overlapping energy delivery element support in which the overlap varies inversely with respect to the state of expansion, and electrodes that sense the amount of the overlap.
Abstract:
A system comprising a biometric monitoring device including a housing including a platform to receive at least one foot of the user, a body weight sensor to generate body weight data, processing circuitry to calculate user weight data which corresponds to the user's weight, using the body weight data, and communication circuitry to: (a) receive user identification data which identifies the user or a portable activity monitoring device, and (b) transmit the user weight data to data storage associated with the user identification data. The system further includes the portable activity monitoring device including a housing having a physical size and shape that is adapted to couple to the user's body, a sensor to generate sensor data, and communication circuitry to receive physiologic data which is based on the user weight data, and processing circuitry to calculate activity data using the sensor data and physiologic data.
Abstract:
Some aspects relate to display of a plurality of graphical indicators on a display, each of the plurality of graphical indicators associated with a respective time interval, wherein, for each of the plurality of graphical indicators, a length of the displayed graphical indicator represents a value of a metric associated with the respective time interval of the graphical indicator, wherein first ends of each of the plurality of graphical indicators substantially trace an arc of a circle, and wherein, for each graphical indicator, a position of the first end of the graphical indicator on the arc of the circle indicates the respective time interval associated with the graphical indicator.
Abstract:
An apparatus is presented having a housing, the housing has an aperture configured to receive a body part of a user. A light emitting part is supported by the housing and at least one proximity sensor is disposed within the housing. A controller is configured to receive signals from the at least one proximity sensor and to determine from the signals whether a body part protrudes by a required amount within the aperture. The control of the appearance of the light emitting part according to the determination.
Abstract:
A detecting, monitoring and reporting apparatus includes at least two sensors for facilitating the generation of data indicative of physiological parameters of the individual and/or data indicative of a contextual parameters of the individual. A processor is coupled to the sensors and is adapted to generate at least one of derived data from at least a portion of the data indicative of physiological parameters and analytical status data from at least a portion of at least one of the data indicative of physiological parameters, the data indicative of contextual parameters, the derived data and the analytical status data. A memory retrievably stores the data and one of various ways of transmitting the data is provided.
Abstract:
A method for establishing a connection between a first electronic computing device and a second electronic computing device includes moving the second electronic computing device so that it is proximal to the first electronic computing device. When the first electronic computing device detects the proximity of the first electronic computing device relative to the second electronic computing device, a radio on the first electronic device is set to a connectable and discoverable state. A wireless connection is automatically established between the first electronic computing device and the second electronic computing device. Data is transmitted between the first electronic computing device and the second electronic computing device.
Abstract:
The invention is a system for monitoring and reporting the activity level and caloric expenditure of an individual. The system has sensors in electronic communication with a wearable device. A processor is programmed to communicate with the sensor and a computing device to activity data from movement-related data. A remote server receiving the activity data and the data from computing device, and generates a graphical presentation. The graphical presentation comprises information related to the activity data. The wearable device also provides visual and audio data.
Abstract:
Systems for detecting when catheter electrodes enter into and exit from an introducer are disclosed. In one form, a system detects a relative position of a catheter (comprising a marker band and an electrode) and an introducer (comprising a proximity sensor adapted to sense the marker band), while the catheter and introducer are in a human body. The system may comprise an electronic control unit to analyze signals from the catheter and/or the introducer, to determine whether the catheter electrode is within the introducer; and to disregard data collected from the electrode when that electrode is in the introducer. The sensor may be on the catheter and the sensed element may be on the introducer. The sensed element may comprise one or several marker bands. A marker band may be applied during the manufacture of a medical device or during its use and is any element capable of electromagnetic detection.