Abstract:
A method of manufacturing a stacked semiconductor package in which a plurality of semiconductor chips are stacked includes preparing a first semiconductor chip including a first semiconductor device, a first penetration electrode, and a first connection unit electrically connected to the first semiconductor device or the first penetration electrode, attaching the first semiconductor chip to a base substrate with the first connection unit interposed therebetween, forming a first rewiring pattern and a first protection layer on the first semiconductor chip by using a printing method, wherein the first rewiring pattern is electrically connected to the first penetration electrode and the first protection layer partially covers the first rewiring pattern and exposes other portions of the first rewiring pattern, and attaching a second semiconductor chip including a second semiconductor device to the first semiconductor chip to electrically connect the second semiconductor device to the first rewiring pattern.
Abstract:
A chip stack may include a first chip and a second chip stacked on the first chip. Each of the first and second chips may include a substrate having an active surface and an inactive surface opposite to the active surface; an internal circuit in the active surface; an I/O chip pad on the active surface and connected to the internal circuit through an I/O buffer; and a I/O connection pad connected to the I/O chip pad through the I/O buffer by a circuit wiring. A redistributed I/O chip pad layer may be on the active surface of the first chip, the redistributed I/O chip pad layer redistributing the I/O chip pad. The I/O connection pads of the first chip and the second chip may be electrically connected to each other by an electrical connecting part.
Abstract:
A stack package may include a substrate having first and second faces opposite each other and an opening formed therein. The first semiconductor chip may be mounted on the first face of the substrate and include a through electrode in the middle region of the first semiconductor chip that is exposed through the opening. The second semiconductor chip may be stacked on the first semiconductor chip and electrically connected to the first semiconductor chip by the through electrode of the first semiconductor chip. The circuit pattern may be formed on the second face of the substrate and include a bonding pad arranged adjacent to the opening and electrically connected to the through electrode of the first semiconductor chip through the opening, an outer connection pad spaced apart from the bonding pad and a connection wiring extending from the opening to the outer connection pad via the bonding pad.
Abstract:
Provided are a circuit board, a semiconductor package including the circuit board, a method of fabricating the circuit board, and a method of fabricating the semiconductor package. The method of fabricating the circuit board includes: forming at least one pair of rows of first bonding pads arranged on a base substrate in a first direction, and a first central plating line formed between the rows of first bonding pads to commonly connect with the rows of first bonding pads; forming an electroplating layer on the first bonding pads; and exposing the base substrate by removing the first central plating line.
Abstract:
Provided are a planar multi semiconductor chip package in which a processor and a memory device are connected to each other via a through electrode and a method of manufacturing the planar multi semiconductor chip package. The planar multi semiconductor chip package includes: a substrate comprising a plurality of first circuit patterns on a first surface and a plurality of second circuit patterns on a second surface; a first semiconductor chip comprising a plurality of memory devices arranged on the substrate, wherein first memory devices surround at least a portion of second memory devices; a second semiconductor chip stacked on the first semiconductor chip and corresponding to the second memory devices; and a plurality of through electrodes arranged on the second memory devices and connecting the first and second semiconductor chips to the second circuit pattern of the substrate.
Abstract:
Provided are a stack chip and a stack chip package having the stack chip. Internal circuits of two semiconductor chips are electrically connected to each other through an input/output buffer connected to an external connection terminal. The semiconductor chip has chip pads, input/output buffers and internal circuits connected through circuit wirings. The semiconductor chip also has connection pads connected to the circuit wirings connecting the input/output buffers to the internal circuits. The semiconductor chips include a first chip and a second chip. The connection pads of the first chip are electrically connected to the connection pads of the second chip through electrical connection means. Input signals input through the external connection terminals are input to the internal circuits of the first chip or the second chip via the chip pads and the input/output buffers of the first chip, and the connection pads of the first chip and the second chip.
Abstract:
A test apparatus may include a test socket having socket pins with a standard configuration. An intermediate connection board may be interposed between the test socket and a package that has solder balls with a non-standard configuration. The intermediate connection board may have contact balls and contact pads. The contact balls may be arranged in a configuration that is compatible with the standard socket pin configuration, and the contact pads may be arranged in a configuration that is compatible with the non-standard solder ball configuration.
Abstract:
Provided are embodiments of semiconductor chips having a redistributed metal interconnection directly connected to power/ground lines of an internal circuit are provided. Embodiments of the semiconductor chips include an internal circuit formed on a semiconductor substrate. A chip pad is disposed on the semiconductor substrate. The chip pad is electrically connected to the internal circuit through an internal interconnection. A passivation layer is provided over the chip pad. A redistributed metal interconnection is provided on the passivation layer. The redistributed metal interconnection directly connects the internal interconnection to the chip pad through a via-hole and a chip pad opening, which penetrate at least the passivation layer. Methods of fabricating the semiconductor chip are also provided.
Abstract:
A test apparatus may include a test socket having socket pins with a standard configuration. An intermediate connection board may be interposed between the test socket and a package that has solder balls with a non-standard configuration. The intermediate connection board may have contact balls and contact pads. The contact balls may be arranged in a configuration that is compatible with the standard socket pin configuration, and the contact pads may be arranged in a configuration that is compatible with the non-standard solder ball configuration.
Abstract:
A package substrate includes an insulating substrate, a functional pattern and a main dummy pattern. A semiconductor chip is arranged on the insulating substrate. The functional pattern is formed on the insulating substrate. The functional pattern is electrically connected to the semiconductor chip. The main dummy pattern is formed on a portion of the insulating substrate at least of to the outside of and/or adjacent the functional pattern in a path of stress generated by a difference between thermal expansion coefficient of the insulating substrate and the semiconductor chip, so as to divert the stress away from the functional pattern. Thus, the stress is not concentrated on the functional pattern. As a result, damage to the functional bump caused by the stress is prevented.