Abstract:
An interconnection element of a spring (body) including a first resilient element with a first contact region and a second contact region and a first securing region and a second resilient element, with a third contact region and a second securing region. The second resilient element is coupled to the first resilient element through respective securing regions and positioned such that upon sufficient displacement of the first contact region toward the second resilient element, the second contact region will contact the third contact region. The interconnection, in one aspect, is of a size suitable for directly contacting a semiconductor device. A large substrate with a plurality of such interconnection elements can be used as a wafer-level contactor. The interconnection element, in another aspect, is of a size suitable for contacting a packaged semiconductor device, such as in an LGA package.
Abstract:
The present invention discloses a method and system compensating for thermally induced motion of probe cards used in testing die on a wafer. A probe card incorporating temperature control devices to maintain a uniform temperature throughout the thickness of the probe card is disclosed. A probe card incorporating bi-material stiffening elements which respond to changes in temperature in such a way as to counteract thermally induced motion of the probe card is disclosed including rolling elements, slots and lubrication. Various means for allowing radial expansion of a probe card to prevent thermally induced motion of the probe card are also disclosed. A method for detecting thermally induced movement of the probe card and moving the wafer to compensate is also disclosed.
Abstract:
An electronic device can comprise a semiconductor die on which can be formed a micromechanical system. The micromechanical system can comprise a plurality of electrically conductive elongate, contact structures, which can be disposed on input and/or output terminals of the semiconductor die. The micromechanical system can also comprise a cooling structure disposed on the semiconductor die.
Abstract:
In a probe card assembly, a series of probe elements can be arrayed on a silicon space transformer. The silicon space transformer can be fabricated with an array of primary contacts in a very tight pitch, comparable to the pitch of a semiconductor device. One preferred primary contact is a resilient spring contact. Conductive elements in the space transformer are routed to second contacts at a more relaxed pitch. In one preferred embodiment, the second contacts are suitable for directly attaching a ribbon cable, which in turn can be connected to provide selective connection to each primary contact. The silicon space transformer is mounted in a fixture that provides for resilient connection to a wafer or device to be tested. This fixture can be adjusted to planarize the primary contacts with the plane of a support probe card board.
Abstract:
Techniques for performing wafer-level burn-in and test of semiconductor devices include a test substrate having active electronic components such as ASICs mounted to an interconnection substrate or incorporated therein, metallic spring contact elements effecting interconnections between the ASICs and a plurality of devices-under-test (DUTs) on a wafer-under-test (WUT), all disposed in a vacuum vessel so that the ASICs can be operated at temperatures independent from and significantly lower than the burn-in temperature of the DUTs. The spring contact elements may be mounted to either the DUTs or to the ASICs, and may fan out to relax tolerance constraints on aligning and interconnecting the ASICs and the DUTs. Physical alignment techniques are also described.
Abstract:
According to some embodiments, a method of determining a resistance of probes on a contactor device is disclosed. The contactor device can include a plurality of probes disposed to contact an electronic device to be tested. The method can include electrically connecting a pair of the probes to each other, and then forcing one of a voltage onto or a current through the pair of the probes. At a location on the contactor device, the other of a voltage across or a current through the pair of the probes can be sensed. A determination relating to a resistance of the probes can be determined from the values of the forced voltage or current and sensed other of the voltage or current.
Abstract:
A halide based stress reducing agent is added to the bath of a rhodium plating solution. The stress reducing agent reduces stress in the plated rhodium, increasing the thickness of the rhodium that can be plated without cracking. In addition, the stress reducing agent does not appreciably decrease the wear resistance or hardness of the plated rhodium.
Abstract:
A probe card provides signal paths between integrated circuit (IC) tester channels and probes accessing input and output pads of ICs to be tested. When a single tester channel is to access multiple (N) IC pads, the probe card provides a branching path linking the channel to each of the N IC input pads. Each branch of the test signal distribution path includes a resistor for isolating the IC input pad accessed via that branch from all other branches of the path so that a fault on that IC pad does not substantially affect the voltage of signals appearing on any other IC pad. When a single tester channel is to monitor output signals produced at N IC pads, the resistance in each branch of the signal path linking the pads of the tester channel is uniquely sized to that the voltage of the input signal supplied to the tester channel is a function of the combination of logic states of the signals produced at the N IC pads. The tester channel measures the voltage of its input signal so that the logic state of the signals produced at each of the N IC output pads can be determined from the measured voltage.
Abstract:
In some embodiments of the invention, a probing apparatus can comprise a substrate, a spring structure attached to the substrate, and a plurality of resilient probes attached to the spring structure. Each probe can comprise a contact portion disposed to contact a device. The spring structure can provide a first source of compliance for each of the probes in response to forces on the contact portions of the probes, and each of the probes can individually provide second sources of compliance in response to the forces on the contact portions of the probes.
Abstract:
A method and system for compensating for thermally induced motion of probe cards used in testing die on a wafer are disclosed. A probe card incorporating temperature control devices to maintain a uniform temperature throughout the thickness of the probe card is disclosed. A probe card incorporating bi-material stiffening elements which respond to changes in temperature in such a way as to counteract thermally induced motion of the probe card is disclosed including rolling elements, slots and lubrication. Various means for allowing radial expansion of a probe card to prevent thermally induced movement of the probe card is disclosed. A method for detecting thermally induced movement of the probe card and moving the wafer to compensate is also disclosed.