Abstract:
A method of manufacturing a cooling fin and package substrate that includes preparing a mold, which has a support base and a resin layer formed on the support base and including on a side thereof a groove, which is configured to form a cooling fin; printing fireable paste containing a carbon component on a side of the mold that has the groove configured to form a cooling fin; removing the support base to leave a cooling object; and firing the cooling object.
Abstract:
Through holes for flow paths of the fuel cell are formed in a thermoplastic polymer film by a process selected from a group consisting of laser drilling, etching and lithography, an inner side surface of the thermoplastic polymer film is coated with a metal layer, and the through holes are filled with a fuel diffusion material and a catalyst to provide an anode. The procedure is repeated to provide a cathode. Then, the anode and the cathode are placed to oppose each other. A cation conducting polymer membrane is disposed, between the anode and the cathode, and the anode, the cation conducting polymer membrane and the cathode are hot-pressed.
Abstract:
A printed circuit board having an embedded cavity capacitor is disclosed. According to an embodiment of the present invention, the printed circuit board having the embedded cavity capacitor, the printed circuit board can include two conductive layers to be used as a power layer and a ground layer, respectively; and a first dielectric layer, placed between the two conductive layers, wherein at least one cavity capacitor is arranged in a noise-transferable path between a noise source and a noise prevented destination which are placed on the printed circuit board, the cavity capacitor being formed to allow a second dielectric layer to have a lower stepped region than the first dielectric layer, the second dielectric layer using the two conductive layers as a first electrode and a second electrode, respectively, and placed between the first electrode and the second electrode.
Abstract:
The present invention provides a method of manufacturing a printed circuit board including the steps of: preparing a pair of raw materials, each formed by sequentially stacking a release film and a first insulating layer, and an adhesive layer, respectively; embedding the pair of raw materials, which are opposed to each other, in the adhesive layer while disposing the release films toward an inner layer; forming a second insulating layer, which has a via formed therethrough and a circuit pattern formed on an upper surface to be connected to the via, on the first insulating layer; cutting edge portions of the second and first insulating layers, the release film, and the adhesive layer; and removing the release film from the first insulating layer.
Abstract:
An EMI noise reduction board using an electromagnetic bandgap structure is disclosed. In the EMI noise reduction board according to an embodiment of the present invention, an electromagnetic bandgap structure having band stop frequency properties can be inserted into an inner portion of the board so as to shield an EMI noise, in which the portion corresponds to an edge of the board and in which the EMI noise is conducted from the inside to the edge of the board and radiates to the outside of the board.
Abstract:
The invention provides a conductive paste including a carbon nanotube and a printed circuit board using the same. The invention provides the conductive paste which exhibits an excellent electrical conductivity and allows the implementation of the X-Y interconnection and simultaneously the Z-interconnection without loosing the carbon nanotube's own original characteristics.
Abstract:
An aspect of the present invention features a manufacturing method of a package on package with a cavity. The method can comprise (a) forming a first upper substrate cavity in one side of an upper substrate; (b) mounting an upper semiconductor chip on the other side of the upper substrate; (c) forming a lower substrate cavity in one side of a lower substrate; (d) mounting a lower semiconductor chip in the lower substrate cavity formed in the lower substrate; and (e) stacking the upper substrate above the lower substrate such that the first upper substrate cavity accommodates a part of the lower semiconductor chip. The package on package and a manufacturing method thereof can reduce the overall thickness of the package by forming cavities in both upper and lower substrates to accommodate a semiconductor chip mounted in the lower substrate.
Abstract:
Disclosed herein is a multilayered printed circuit board, including: a build-up layer including a plurality of insulating layers and a plurality of circuit layers; an insulating resin layer, including bumps, formed on the outermost circuit layer of one side of the build-up layer; and a solder resist layer formed on the outermost layer of the other side of the build-up layer. The multilayered printed circuit board is manufactured by sequentially placing a build-up layer and a solder resist layer on one side of an insulating resin layer, the other side of which is provided with bumps. The present invention is advantageous in that the thickness of the multilayered printed circuit board is decreased, the production processes thereof is simplified, and the production efficiency is increased.
Abstract:
A post bump and a method of forming the post bump are disclosed. The method of forming the post bump can include: forming a resist layer, in which an aperture is formed in correspondence to a position of an electrode pad, over a substrate, on which the electrode pad is formed; forming a metal post by filling a part of the aperture with a metallic material; filling a remaining part of the aperture with solder; reflowing the solder by applying heat; and removing the resist layer. This method can be utilized to prevent deviations in the plated solder and prevent the unnecessary flowing of the solder over the sides of the metal post during reflowing, so that the amount of solder used can be minimized.
Abstract:
An optical wiring board and a method of manufacturing the optical wiring board are disclosed. The method of manufacturing an optical wiring board may include forming a lower cladding over an insulating layer; forming a side cladding, which has an indentation corresponding with the core, over the lower cladding; filling a core material in the indentation; and forming an upper cladding such that the core material is covered. Embodiments of the invention can be utilized to readily control the thickness of the core.