摘要:
A structure and method of fabricating a semiconductor corrosion resistant metal fuse line including a refractory liner which can also act as a resistor is disclosed. Fabrication is accomplished using damascene process. The metal structure can be formed on a semiconductor substrate including a first portion including a first layer and a second layer, the first layer having higher resistivity than the second layer, the second layer having horizontal and vertical surfaces that are in contact with the first layer in the first portion, and a second portion coupled to the first portion, the second portion being comprised of the first layer, the first layer not being in contact with the horizontal and vertical surfaces of the second layer in the second portion. The metal structure can be used as a corrosion resistant fuse. The metal structure can also be used as a resistive element. The high voltage tolerant resistor structure allows for usage in mixed-voltage, and mixed signal and analog/digital applications. The resistor element has low capacitance, low skin effect, high linearity, a high melting temperature, and a high critical current to failure. The resistor structure can be formed on the walls of a dielectric trough. The structure can be applied to circuit applications such as an ESD network, an RC-coupled MOSFET, a resistor ballasted MOSFET and others. The resistors can be in series with the MOSFET or other structures.
摘要:
A barrier film for a semiconductor device structure. The barrier film includes a compound including nitrogen and at least one of titanium or tantalum, nitrogen in a concentration that varies within the barrier film, and oxygen in a concentration that varies within the barrier film.
摘要:
The adhesion of a silicon carbide containing film to a surface is enhanced by employing a transition film of silicon nitride, silicon dioxide and/or silicon oxynitride.
摘要:
A method for plating a second metal directly to a first metal without utilizing a mask. A semiconductor substrate is provided including at least one metal feature and at least one insulating layer covering the metal feature and the substrate. At least one recess is formed in the at least one insulating layer thereby exposing at least a portion of the metal feature. At least one conductive barrier layer is formed over the insulating layer and the exposed portion of the metal feature. A plating seed layer of a first metal is formed over the at least one barrier layer. A photoresist layer is deposited over the plating seed layer. Portions of the photoresist layer and of the plating seed layer outside of the at least one recess are removed. Photoresist remaining in the at least one recess is removed. A second metal is electroplated to the plating seed layer in the recess.
摘要:
An apparatus for removing material from a substrate including a plurality of polishing cells. A first polishing cell detects the material on the substrate and performs a first polishing operation for removing material from the substrate. The first polishing cell includes at least one sensor for characterizing the material on the substrate and at least one polishing tool for removing material from the substrate. A second polishing cell includes at least one polishing tool for completing the polishing process.
摘要:
A microelectronic structure and a method for fabricating the microelectronic structure provide a plurality of voids interposed between a plurality of conductor layers. The plurality of voids is also located between a liner layer and an inter-level dielectric layer. The voids provide for enhanced electrical performance of the microelectronic structure.
摘要:
An integrated circuit, including a substrate, at least one metal wiring layer disposed above the substrate. The metal wiring layer including a wiring switch and a plurality of patterned conductors. The wiring switch including a back gate field effect transistor (BGFET).
摘要:
An interconnect structure and method for fabricating the interconnect structure having enhanced performance and reliability, by minimizing oxygen intrusion into a seed layer and an electroplated copper layer of the interconnect structure, are disclosed. At least one opening in a dielectric layer is formed. A sacrificial oxidation layer disposed on the dielectric layer is formed. The sacrificial oxidation layer minimizes oxygen intrusion into the seed layer and the electroplated copper layer of the interconnect structure. A barrier metal layer disposed on the sacrificial oxidation layer is formed. A seed layer disposed on the barrier metal layer is formed. An electroplated copper layer disposed on the seed layer is formed. A planarized surface is formed, wherein a portion of the sacrificial oxidation layer, the barrier metal layer, the seed layer, and the electroplated copper layer are removed. In addition, a capping layer disposed on the planarized surface is formed.
摘要:
Methods of minimizing or eliminating plasma damage to low k and ultra low k organosilicate intermetal dielectric layers are provided. The reduction of the plasma damage is effected by interrupting the etch and strip process flow at a suitable point to add an inventive treatment which protects the intermetal dielectric layer from plasma damage during the plasma strip process. Reduction or elimination of a plasma damaged region in this manner also enables reduction of the line bias between a line pattern in a photoresist and a metal line formed therefrom, and changes in the line width of the line trench due to a wet clean after the reactive ion etch employed for formation of the line trench and a via cavity. The reduced line bias has a beneficial effect on electrical yields of a metal interconnect structure.
摘要:
A monolithic integrated circuit and method includes a substrate, a plurality of semiconductor device layers monolithically integrated on the substrate, and a metal wiring layer with vias interconnecting the plurality of semiconductor device layers. The semiconductor device layers are devoid of bonding or joining interface with the substrate. A method of fabricating a monolithic integrated circuit using a single substrate, includes fabricating semiconductor devices on a substrate, fabricating at least one metal wiring layer on the semiconductor devices, forming at least one dielectric layer in integral contact with the at least one metal wiring layer, forming contact openings through the at least one dielectric layer to expose regions of the at least one metal wiring layer, integrally forming, from the substrate, a second semiconductor layer on the dielectric layer, and in contact with the at least one metal wiring layer through the contact openings, and forming a plurality of non-linear semiconductor devices in said second semiconductor layer.