DEFECT-FREE STRAIN RELAXED BUFFER LAYER
    88.
    发明申请
    DEFECT-FREE STRAIN RELAXED BUFFER LAYER 审中-公开
    无缺陷的松弛缓冲层

    公开(公告)号:US20160190304A1

    公开(公告)日:2016-06-30

    申请号:US14588221

    申请日:2014-12-31

    Abstract: A modified silicon substrate having a substantially defect-free strain relaxed buffer layer of SiGe is suitable for use as a foundation on which to construct a high performance CMOS FinFET device. The substantially defect-free SiGe strain-relaxed buffer layer can be formed by making cuts in, or segmenting, a strained epitaxial film, causing edges of the film segments to experience an elastic strain relaxation. When the segments are small enough, the overall film is relaxed so that the film is substantially without dislocation defects. Once the substantially defect-free strain-relaxed buffer layer is formed, strained channel layers can be grown epitaxially from the relaxed SRB layer. The strained channel layers are then patterned to create fins for a FinFET device. In one embodiment, dual strained channel layers are formed—a tensilely strained layer for NFET devices, and a compressively strained layer for PFET devices.

    Abstract translation: 具有基本上无缺陷的SiGe应变松弛缓冲层的改性硅衬底适用于构建高性能CMOS FinFET器件的基础。 可以通过切割或分割应变的外延膜来形成基本上无缺陷的SiGe应变松弛缓冲层,使得薄膜段的边缘经历弹性应变弛豫。 当片段足够小时,整个膜被松弛,使得膜基本上没有位错缺陷。 一旦形成了基本上无缺陷的应变松弛缓冲层,则可以从松弛的SRB层外延生长应变通道层。 然后将应变通道层图案化以产生用于FinFET器件的鳍片。 在一个实施例中,形成双应变通道层 - 用于NFET器件的拉伸应变层,以及用于PFET器件的压缩应变层。

    DUAL CHANNEL MATERIAL FOR finFET FOR HIGH PERFORMANCE CMOS
    90.
    发明申请
    DUAL CHANNEL MATERIAL FOR finFET FOR HIGH PERFORMANCE CMOS 有权
    用于高性能CMOS的finFET的双通道材料

    公开(公告)号:US20160064288A1

    公开(公告)日:2016-03-03

    申请号:US14470347

    申请日:2014-08-27

    Abstract: Silicon fins are formed in a bulk silicon substrate and thereafter trench isolation regions are formed between each silicon fin. The silicon fins in nFET and pFET device regions are then recessed. A relaxed silicon germanium alloy fin portion is formed on a topmost surface of each recessed silicon fin portion or on exposed surface of the substrate. A compressively strained silicon germanium alloy fin portion is formed on each relaxed silicon germanium alloy fin portion within the pFET device region, and a strained silicon-containing fin portion is formed on each relaxed silicon germanium alloy fin portion within the nFET device region. Sidewall surfaces of each compressively strained silicon-containing germanium alloy fin portion and each tensile strained silicon-containing fin portion are then exposed. A functional gate structure is provided on the exposed sidewall surfaces of each compressively strained silicon-containing germanium alloy fin portion and each tensile strained silicon-containing fin portion.

    Abstract translation: 硅片形成在体硅衬底中,其后在每个硅片之间形成沟槽隔离区。 nFET和pFET器件区域中的硅散热片然后凹入。 在每个凹陷硅片部分的最上表面上或在基底的暴露表面上形成松弛的硅锗合金翅片部分。 在pFET器件区域内的每个松弛的硅锗合金翅片部分上形成压缩应变硅锗合金翅片部分,并且在nFET器件区域内的每个松弛硅锗合金翅片部分上形成应变含硅鳍部分。 然后暴露每个压缩应变含硅锗合金翅片部分和每个拉伸应变含硅翅片部分的侧壁表面。 在每个压缩应变含硅锗合金翅片部分和每个拉伸应变含硅翅片部分的暴露的侧壁表面上设置功能门结构。

Patent Agency Ranking