Abstract:
Electrical fuse (eFuse) and resistor structures and methods of manufacture are provided. The method includes forming metal gates having a capping material on a top surface thereof. The method further includes protecting the metal gates and the capping material during an etching process which forms a recess in a dielectric material. The method further includes forming an insulator material and metal material within the recess. The method further includes forming a contact in direct electrical contact with the metal material.
Abstract:
Back end of the line (BEOL) capacitors and methods of manufacture are provided. The method includes forming wiring lines on a substrate, with spacing between adjacent wiring lines. The method further includes forming an air gap within spacing between the adjacent wiring lines by deposition of a capping material. The method further includes opening the air gap between selected adjacent wiring lines. The method further includes depositing conductive material within the opened air gap.
Abstract:
FinFET devices and processes to prevent fin or gate collapse (e.g., flopover) in finFET devices are provided. The method includes forming a first set of trenches in a semiconductor material and filling the first set of trenches with insulator material. The method further includes forming a second set of trenches in the semiconductor material, alternating with the first set of trenches that are filled. The second set of trenches form semiconductor structures which have a dimension of fin structures. The method further includes filling the second set of trenches with insulator material. The method further includes recessing the insulator material within the first set of trenches and the second set of trenches to form the fin structures.
Abstract:
Semiconductor structures with different devices each having spacers of equal thickness and methods of manufacture are disclosed. The method includes forming a first gate stack and a second gate stack. The method further includes forming sidewall spacers of equal thickness for both the first gate stack and the second gate stack by depositing a liner material over spacer material on sidewalls of the first gate stack and the second gate stack and within a space formed between the spacer material and source and drain regions of the first gate stack.
Abstract:
The disclosure is directed to semiconductor structures and, more particularly, to Metal-Insulator-Metal (MIM) capacitor structures and methods of manufacture. The method includes: forming at least one gate structure; removing material from the at least one gate structure to form a trench; depositing capacitor material within the trench and at an edge or outside of the trench; and forming a first contact in contact with a first conductive material of the capacitor material and a second contact in contact with a second conductive material of the capacitor material.
Abstract:
Back end of the line (BEOL) capacitors and methods of manufacture are provided. The method includes forming wiring lines on a substrate, with spacing between adjacent wiring lines. The method further includes forming an air gap within spacing between the adjacent wiring lines by deposition of a capping material. The method further includes opening the air gap between selected adjacent wiring lines. The method further includes depositing conductive material within the opened air gap.
Abstract:
A material stack comprising alternating layers of a silicon etch stop material and a germanium nanowire template material is formed on a surface of a bulk substrate. The material stack and a portion of the bulk substrate are then patterned by etching to provide an intermediate fin structure including a base semiconductor portion and alternating portions of the silicon etch stop material and the germanium nanowire template material. After recessing each germanium nanowire template material and optionally the base semiconductor portion, and etching each silicon etch stop material to define a new fin structure, a spacer is formed on sidewall surfaces of the remaining portions of the new fin structure. The alternating layers of germanium nanowire template material are then suspended above a notched surface portion of the bulk substrate and thereafter a functional gate structure is formed.
Abstract:
A modified silicon substrate having a substantially defect-free strain relaxed buffer layer of SiGe is suitable for use as a foundation on which to construct a high performance CMOS FinFET device. The substantially defect-free SiGe strain-relaxed buffer layer can be formed by making cuts in, or segmenting, a strained epitaxial film, causing edges of the film segments to experience an elastic strain relaxation. When the segments are small enough, the overall film is relaxed so that the film is substantially without dislocation defects. Once the substantially defect-free strain-relaxed buffer layer is formed, strained channel layers can be grown epitaxially from the relaxed SRB layer. The strained channel layers are then patterned to create fins for a FinFET device. In one embodiment, dual strained channel layers are formed—a tensilely strained layer for NFET devices, and a compressively strained layer for PFET devices.
Abstract:
A gate cavity is formed exposing a portion of a silicon fin by removing a sacrificial gate structure that straddles the silicon fin. An epitaxial silicon germanium alloy layer is formed within the gate cavity and on the exposed portion of the silicon fin. Thermal mixing or thermal condensation is performed to convert the exposed portion of the silicon fin into a silicon germanium alloy channel portion which is laterally surrounded by silicon fin portions. A functional gate structure is formed within the gate cavity providing a finFET structure having a silicon germanium alloy channel portion which is laterally surrounded by silicon fin portions.
Abstract:
Silicon fins are formed in a bulk silicon substrate and thereafter trench isolation regions are formed between each silicon fin. The silicon fins in nFET and pFET device regions are then recessed. A relaxed silicon germanium alloy fin portion is formed on a topmost surface of each recessed silicon fin portion or on exposed surface of the substrate. A compressively strained silicon germanium alloy fin portion is formed on each relaxed silicon germanium alloy fin portion within the pFET device region, and a strained silicon-containing fin portion is formed on each relaxed silicon germanium alloy fin portion within the nFET device region. Sidewall surfaces of each compressively strained silicon-containing germanium alloy fin portion and each tensile strained silicon-containing fin portion are then exposed. A functional gate structure is provided on the exposed sidewall surfaces of each compressively strained silicon-containing germanium alloy fin portion and each tensile strained silicon-containing fin portion.