摘要:
Plasma damage in ultra low k dielectric materials during formation of a dual damascene metal interconnect structure is reduced by providing a protective spacer on sidewalls of a line trench. A densified trench bottom region may be additionally formed directly beneath an exposed horizontal surface of the line trench. The protective spacer and/or the densified trench bottom region protects an ultra low k intermetal dielectric layer from plasma damage during a plasma strip process that is used to remove a disposable via fill plug employed in the dual damascene metal interconnect structure.
摘要:
A structure for a semiconductor component is provided having a bi-layer capping coating integrated and built on supporting layer to be transferred. The bi-layer capping protects the layer to be transferred from possible degradation resulting from the attachment and removal processes of the carrier assembly used for layer transfer. A wafer-level layer transfer process using this structure is enabled to create three-dimensional integrated circuits.
摘要:
A method to form a closed air gap interconnect structure is described. A starting structure made of regions of a permanent support dielectric under the interconnect lines and surrounding interconnect vias with one or more sacrificial dielectrics present in the remaining portions of the interconnect structure, is capped with a dielectric barrier which is perforated using a stencil with a regular array of holes. The sacrificial dielectrics are then extracted through the holes in the dielectric barrier layer such that the interconnect lines are substantially surrounded by air except for the regions of the support dielectric under the lines. The holes in the cap layer are closed off by depositing a second barrier dielectric so that a closed air gap is formed. Several embodiments of this method and the resulting structures are described.
摘要:
A structure incorporates very low dielectric constant (k) insulators with copper wiring to achieve high performance interconnects. The wiring is supported by a relatively durable low k dielectric such as SiLk or SiO2 and a very low k and less-robust gap fill dielectric is disposed in the remainder of the structure, so that the structure combines a durable layer for strength with a very low k dielectric for interconnect electrical performance.
摘要:
Often used to reduce the RC delay in integrated circuits are dielectric films of porous organosilicates which have a silica like backbone with alkyl or aryl groups (to add hydrophobicity to the materials and create free volume) attached directly to the Si atoms in the network. Si—R bonds rarely survive an exposure to plasmas or chemical treatments commonly used in processing; this is especially the case in materials with an open cell pore structure. When Si—R bonds are broken, the materials lose hydrophobicity, due to formation of hydrophilic silanols and low dielectric constant is compromised. A method by which the hydrophobicity of the materials is recovered using a novel class of silylation agents which may have the general formula (R2N)XSiR′Y where X and Y are integers from 1 to 3 and 3 to 1 respectively, and where R and R′ are selected from the group of hydrogen, alkyl, aryl, allyl and a vinyl moiety. Mechanical strength of porous organosilicates is also improved as a result of the silylation treatment.
摘要:
A method to form a closed air gap interconnect structure is described. A starting structure made of regions of a permanent support dielectric under the interconnect lines and surrounding interconnect vias with one or more sacrificial dielectrics present in the remaining portions of the interconnect structure, is capped with a dielectric barrier which is perforated using a stencil with a regular array of holes. The sacrificial dielectrics are then extracted through the holes in the dielectric barrier layer such that the interconnect lines are substantially surrounded by air except for the regions of the support dielectric under the lines. The holes in the cap layer are closed off by depositing a second barrier dielectric so that a closed air gap is formed. Several embodiments of this method and the resulting structures are described.
摘要:
A microjoint interconnect structure comprising a dense array of metallic studs of precisely controllable height tipped with a joining metallurgy. The array is produced on a device chip that is to be attached to a carrier, or to a carrier along with other devices, some of which may be selected to have similar interconnect structures so as to form all together an assembled carrier that functions as a complete computing, communications or networking system.
摘要:
A spin-on cap useful as a post-CMP cap for Cu interconnect structures is provided. The inventive spin-on cap includes a low-k dielectric (on the order of 3.5 or less) and at least one additive. The at least one additive employed in the present invention is capable of binding Cu ions, and is soluble in the spun-on low-k dielectric. The spin-on cap of the present invention may further include a spun-on low-k (on the order of 3.5 or less) reactive-ion etch (RIE) stop layer. Spin-on caps containing a bilayer of low-dielectric plus at least additive and low-k RIE stop layer are preferred. It is noted that the inventive spin-on cap of the present invention does not significantly increase the effective dielectric constant of the interconnect structure and does not add additional cost to the fabrication of the interconnect structure since a single deposition tool, i.e., spin coating tool, is employed. Moreover, because of the presence of the additive in the spin-on cap, Cu migration is substantially minimized.
摘要:
The present invention provides a permanent protective hardmask which protects the dielectric properties of a main dielectric layer having a desirably low dielectric constant in a semiconductor device from undesirable increases in the dielectric constant, undesirable increases in current leakage, and low device yield from surface scratching during subsequent processing steps. The protective hardmask further includes a single layer or dual layer sacrificial hardmask particularly useful when interconnect structures such as via openings and/or lines are formed in the low dielectric material during the course of making the final product. The sacrificial hardmask layers and the permanent hardmask layer may be formed in a single step from a same precursor wherein process conditions are altered to provide films of differing dielectric constants. Most preferably, a dual damascene structure has a tri-layer hardmask comprising silicon carbide BLoK™, PECVD silicon nitride, and PECVD silicon dioxide, respectively, formed over a bulk low dielectric constant interlevel dielectric prior to forming the interconnect structures in the interlevel dielectric.
摘要:
A metal plus low dielectric constant (low-k) interconnect structure is provided for a semiconductor device wherein adjacent regions in a surface separated by a dielectric have dimensions in width and spacing in the sub 250 nanometer range, and in which reduced lateral leakage current between adjacent metal lines, and a lower effective dielectric constant than a conventional structure, is achieved by the positioning of a differentiating or mask member that is applied for the protection of the dielectric in subsequent processing operations, at a position about 2-5 nanometers below a, to be planarized, surface where there will be a lower electric field. The invention is particularly useful in the damascene type device structure in the art wherein adjacent conductors extend from a substrate through an interlevel dielectric material, connections are made in a trench, a diffusion barrier liner is provided in the interlevel dielectric material and masking is employed to protect the dielectric material between conductors during processing operations.