摘要:
Disclosed is a package module of a battery protection circuit. The package module comprises: a first internal connection terminal area and a second internal connection terminal area, and in which first and second internal connection terminals connected to a battery can provided with a bare cell are respectively disposed; an external connection terminal area, in which a plurality of external connection terminals are disposed; and a protection circuit area comprising a device area in which a plurality of passive devices forming the battery protection circuit are disposed and a chip area, which is adjacent to the device area, and in which a protection IC and a dual FET chip forming the battery protection circuit are disposed, are disposed between the external connection terminal area and the second internal connection terminal area.
摘要:
A semiconductor device comprises a top surface having a first contact, a bottom surface having a second contact, a via hole penetrating a substrate, an insulation layer structure on a sidewall of the via hole, the insulation layer structure having an air gap therein, a through electrode having an upper surface and a lower surface on the insulation layer structure, the through electrode filling the via hole and the lower surface being the second contact, and a metal wiring electrically connected to the upper surface of the through electrode and electrically connected to the first contact.
摘要:
A method of manufacturing a semiconductor device and an apparatus for manufacturing a semiconductor device in which moisture is removed from a porous low-dielectric layer after a chemical mechanical polishing (CMP) process include formation of a porous low-dielectric layer on a substrate. A metal interconnection is formed on the substrate having the porous low-dielectric layer. The metal interconnection forms a planar surface with the porous low-dielectric layer to fill the openings. Ultraviolet (UV) light is irradiated to the porous low-dielectric layer to remove absorbed moisture from the porous low-dielectric layer. A capping layer is formed on the substrate having the porous low-dielectric layer and the metal interconnection. The capping layer is formed in-situ to prevent additional absorption of moisture.
摘要:
A fuse base insulating region, for example, an insulating interlayer or a compensation region disposed in an insulating interlayer, is formed on a substrate. An etch stop layer is formed on the fuse base insulating region and forming an insulating interlayer having a lower dielectric constant than the first fuse base insulating region on the etch stop layer. A trench extending through the insulating interlayer and the etch stop layer and at least partially into the fuse base insulating region is formed. A fuse is formed in the trench. The fuse base insulating region may have a greater mechanical strength and/or density than the second insulating interlayer.
摘要:
A method of fabricating a semiconductor device includes forming a lower device on a lower semiconductor substrate, and forming an interlayer insulating film on the lower device. An upper semiconductor substrate is formed on the interlayer insulating film such that the interlayer insulating film is between the lower and upper semiconductor substrates. Upper trenches are formed within the upper semiconductor substrate. An upper device isolating film is formed within the upper trenches. The upper device isolating film is irradiated with ultraviolet light having a wavelength configured to break chemical bonds of impurities in the upper device isolating film to reduce an impurity concentration thereof.
摘要:
A method of forming a semiconductor device can include forming an insulation layer using a material having a composition selected to provide resistance to subsequent etching process. The composition of the material can be changed to reduce the resistance of the material to the subsequent etching process at a predetermined level in the insulation layer. The subsequent etching process can be performed on the insulation layer to remove an upper portion of the insulation layer above the predetermined level and leave a lower portion of the insulation layer below the predetermined level between adjacent conductive patterns extending through the lower portion of the insulation layer. A low-k dielectric material can be formed on the lower portion of the insulation layer between the adjacent conductive patterns to replace the upper portion of the insulation layer above the predetermined level.
摘要:
A method of manufacturing the semiconductor device includes providing a first interlayer dielectric layer having a conductive pattern, sequentially forming a first etch stop layer, a second etch stop layer, a second interlayer dielectric layer and a mask pattern on the first interlayer dielectric layer, forming an opening in the second interlayer dielectric layer using the mask pattern as a mask, the opening exposing the second etch stop layer, and performing an etching process including simultaneously removing the mask pattern and the second etch stop layer exposed by the opening to expose the first etch stop layer.
摘要:
Example embodiments relate to a method of forming a hardened porous dielectric layer. The method may include forming a dielectric layer containing porogens on a substrate, transforming the dielectric layer into a porous dielectric layer using a first UV curing process to remove the porogens from the dielectric layer, and transforming the porous dielectric layer into a crosslinked porous dielectric layer using a second UV curing process to generate crosslinks in the porous dielectric layer.
摘要:
An integrated circuit device includes a plurality of stacked circuit layers, at least one of the plurality of circuit layers including a composite interlayer insulation layer including laterally adjacent first and second insulating material regions having different mechanical strengths and dielectric properties and a plurality of circuit components disposed in the composite interlayer insulation layer. The first insulating material region may have a lower dielectric constant and a lower mechanical strength than the second insulating material region such that, for example, the first insulating material region may be positioned near signal lines or other circuit features to reduce capacitance while using the second insulating material region near a location that is susceptible to localized mechanical stress, such as a fuse location, an external connection bonding location or a scribe line location.
摘要:
Example embodiments herein relate to a method of fabricating a semiconductor device. The method may include forming a liner insulating layer on a surface of a gate pattern to have a first thickness. Subsequently, a gap fill layer may be formed on the liner insulating layer by flowable chemical vapor deposition (FCVD) or spin-on-glass (SOG). The liner insulating layer and the gap fill layer may be recessed such that the liner insulating layer has a second thickness, which is smaller than the first thickness, in the region in which a metal silicide will be formed. Metal silicide may be formed on the plurality of gate patterns to have a relatively uniform thickness using the difference in thickness of the liner insulating layer.