摘要:
A reusable burn-in/test fixture for testing unsingulated dice on a semiconductor wafer consists of two halves. The first half of the test fixture is a wafer cavity plate for receiving the wafer, and the second half establishes electrical communication between the wafer and electrical testing equipment. A rigid substrate has conductors thereon which establish electrical contact with the wafer. The test fixture need not be opened until the burn-in and electrical testing are completed. After burn-in stress and electrical testing, it is possible to establish interconnection between the single die or separate and package dice into discrete parts, arrays or clusters, either as singulated parts or as arrays.
摘要:
A reusable burn-in/test fixture for testing unsingulated dice on a semiconductor wafer consisting of two halves. The first half of the test fixture is a wafer cavity plate for receiving the wafer, and the second half establishes electrical communication between the wafer and electrical testing equipment. A rigid substrate has conductors thereon which establish electrical contact with the wafer. The test fixture need not be opened until the burn-in and electrical testing are completed. After burn-in stress and electrical testing, it is possible to establish interconnection between the single die or separate and package dice into discrete parts, arrays or clusters, either as singulated parts or as arrays.
摘要:
A reusable burn-in/test fixture for testing unsingulated dice on a semiconductor wafer consisting of two halves. The first half of the test fixture is a wafer cavity plate for receiving the wafer, and the second half establishes electrical communication between the wafer and electrical testing equipment. A rigid substrate has conductors thereon which establish electrical contact with the wafer. The test fixture need not be opened until the burn-in and electrical testing are completed. After burn-in stress and electrical testing, it is possible to establish interconnection between the single die or separate and package dice into discrete parts, arrays or clusters, either as singulated parts or as arrays.
摘要:
A reusable burn-in/test fixture for testing unsingulated dice on a semiconductor wafer consisting of two halves. The first half of the test fixture is a wafer cavity plate for receiving the wafer, and the second half establishes electrical communication between the wafer and electrical testing equipment. A rigid substrate has conductors thereon which establish electrical contact with the wafer. The test fixture need not be opened until the burn-in and electrical testing are completed. After burn-in stress and electrical testing, it is possible to establish interconnection between the single die or separate and package dice into discrete parts, arrays or clusters, either as singulated parts or as arrays.
摘要:
A reusable burn-in/test fixture for testing unsingulated dice on a semiconductor wafer consisting of two halves. The first half of the test fixture is a wafer cavity plate for receiving the wafer, and the second half establishes electrical communication between the wafer and electrical testing equipment. A rigid substrate has conductors thereon which establish electrical contact with the wafer. The test fixture need not be opened until the burn-in and electrical testing are completed. After bum-in stress and electrical testing, it is possible to establish interconnection between the single die or separate and package dice into discrete parts, arrays or clusters, either as singulated parts or as arrays.
摘要:
A reusable burn-in/test fixture for testing unsingulated dice on a semiconductor wafer consisting of two halves. The first half of the test fixture is a wafer cavity plate for receiving the wafer, and the second half establishes electrical communication between the wafer and electrical testing equipment. A rigid substrate has conductors thereon which establish electrical contact with the wafer. The test fixture need not be opened until the burn-in and electrical testing are completed. After burn-in stress and electrical testing, it is possible to establish interconnection between the single die or separate and package dice into discrete parts, arrays or clusters, either as singulated parts or as arrays.
摘要:
A reusable burn-in/test fixture for testing unsingulated dice on a semiconductor wafer consisting of two halves. The first half of the test fixture is a wafer cavity plate for receiving the wafer, and the second half establishes electrical communication between the wafer and electrical testing equipment. A rigid substrate has conductors thereon which establish electrical contact with the wafer. The test fixture need not be opened until the burn-in and electrical testing are completed. After burn-in stress and electrical testing, it is possible to establish interconnection between the single die or separate and package dice into discrete parts, arrays or clusters, either as singulated parts or as arrays.
摘要:
A polyetheretherketone pipe of length greater than 250 meters and a residual stress of less than 5 MPa may be made using a calibrator device (2) which includes a cone shaped opening (6) arranged to receive a molten extruded pipe shaped polymer. Attached to the front member (4) is a vacuum plate (14a) and successive vacuum plates (14b-14h) are attached to one another to define an array of vacuum plates, the vacuum plates being arranged to allow a vacuum to be applied to a pipe precursor passing through opening (16). The vacuum plates (14) also include (10) temperature control means for heating or cooling the plates and therefore heating or cooling a pipe precursor passing through the openings. With a vacuum applied to opening (6, 16) and heating/cooling the plates, an extruded hot plastics pipe is inserted into calibrator (2) via opening (6) and conveyed through opening (16) in plates (14), whereupon it is urged by the vacuum against the cylindrical surface defined by plates (14) to maintain its shape and the (15) temperature of each plate is controlled to control the rate of cooling of the pipe precursor passing through. The pipe may be cooled at a relatively slow rate so that a pipe made from a relatively fast crystallizing polymer crystallizes and the crystallinity of the pipe along its extent and throughout its thickness is substantially constant.
摘要:
A three-dimensional object is manufactured from a powder of polymer material by selective sintering process by means of electromagnetic radiation of the powder, wherein the powder comprises a preselected polymer or copolymer and is subjected to selective sintering such that the manufactured three-dimensional object has a final crystallinity which is in such a range that the balance of properties, in particular mechanical properties including Young's modulus, tensile strength and elongation at break, is improved.
摘要:
A semiconductor component includes a semiconductor substrate having a substrate contact, and a through wire interconnect (TWI) bonded to the substrate contact. The through wire interconnect (TWI) includes a via through the substrate contact and the substrate, a wire in the via bonded to the substrate contact, and a contact on the wire. A stacked semiconductor component includes the semiconductor substrate, and a second semiconductor substrate stacked on the substrate and bonded to a through wire interconnect on the substrate. A method for fabricating a semiconductor component with a through wire interconnect includes the steps of providing a semiconductor substrate with a substrate contact, forming a via through the substrate contact and part way through the substrate, placing the wire in the via, bonding the wire to the substrate contact, and then thinning the substrate from a second side to expose a contact on the wire. A system for fabricating the semiconductor component includes a bonding capillary configured to place the wire in the via, and to form a bonded connection between the wire and the substrate contact.