Abstract:
Methods for etching alkali metal compounds are disclosed. Some embodiments of the disclosure expose an alkali metal compound to an alcohol to form a volatile metal alkoxide. Some embodiments of the disclosure expose an alkali metal compound to a β-diketone to form a volatile alkali metal β-diketonate compound. Some embodiments of the disclosure are performed in-situ after a deposition process. Some embodiments of the disclosure provide methods which selectively etch alkali metal compounds.
Abstract:
A method of fabricating a piezoelectric layer includes depositing a piezoelectric material onto a substrate in a first crystallographic phase by physical vapor deposition while the substrate remains at a temperature below 400° C., and thermally annealing the substrate at a temperature above 500° C. to convert the piezoelectric material to a second crystallographic phase. The physical vapor deposition includes sputtering from a target in a plasma deposition chamber.
Abstract:
Embodiments of the present disclosure relate to methods for dicing one or more optical devices from a substrate with a laser machining system. The laser machining system utilizes a laser to perform methods for dicing one or more optical devices from a substrate along a dicing path. The methods use one of forming a plurality of laser spots along the dicing path or forming a plurality of trenches along the dicing path.
Abstract:
A reactor for coating particles includes one or more motors, a rotary vacuum chamber configured to hold particles to be coated, wherein the rotary vacuum chamber is coupled to the motors, a controller configured to cause the motors to rotate the rotary vacuum chamber about an axial axis of the rotary vacuum chamber such that the particles undergo tumbling agitation, a vacuum port to exhaust gas from the rotary vacuum chamber, a paddle assembly including a rotatable drive shaft extending through the rotary vacuum chamber and coupled to the motors and at least one paddle extending radially from the drive shaft, such that rotation of the drive shaft by the motors orbits the paddle about the drive shaft in a second direction, and a chemical delivery system including a gas outlet on the paddle configured inject process gas into the particles.
Abstract:
Embodiments of the present disclosure generally relate to substrate support assemblies for retaining a surface of a substrate having one or more devices disposed on the surface without contacting the one or more devices and deforming the substrate, and a system having the same. In one embodiment, the substrate support assembly includes an edge ring coupled to a body of the substrate support assembly. A controller is coupled to actuated mechanisms of a plurality of pixels coupled to the body of the substrate support assembly such that portions of pixels corresponding to a portion of the surface of a substrate to be retained are positioned to support the portion without contacting one or more devices disposed on the surface of the substrate to be retained on the support surface.
Abstract:
A method of fabricating a piezoelectric layer includes depositing a piezoelectric material onto a substrate in a first crystallographic phase by physical vapor deposition while the substrate remains at a temperature below 400° C., and thermally annealing the substrate at a temperature above 500° C. to convert the piezoelectric material to a second crystallographic phase. The physical vapor deposition includes sputtering from a target in a plasma deposition chamber.
Abstract:
A reactor for coating particles includes a rotatable reactor assembly includes a reactor drum configured to hold a plurality of particles to be coated, an inlet tube, and an outlet tube. The drum includes a cylindrical tube, and an inlet-side endplate secured to cover an inlet-side opening of the cylindrical tube and/or an outlet-side endplate secured to cover an outlet-side opening of the cylindrical tube. A stationary gas inlet line is coupled to the inlet tube by a rotary inlet seal, a stationary gas outlet line is coupled to the outlet tube by a rotary outlet seal, and a motor rotates the rotatable reactor assembly. The inlet tube is releasably mechanically secured to the inlet-side endplate and the outlet tube is releasably mechanically secured to the outlet-side endplate.
Abstract:
A reactor for coating particles includes a rotatable reactor assembly including a drum configured to hold a plurality of particles to be coated, an inlet tube, and an outlet tube, a stationary gas inlet line coupled to the inlet tube by a rotary inlet seal, a stationary gas outlet line coupled to the outlet tube by a rotary outlet seal, and a motor to rotate the rotatable reactor assembly.
Abstract:
In an embodiment is provided a method of forming a blind via in a substrate comprising a mask layer, a conductive layer, and a dielectric layer that includes conveying the substrate to a scanning chamber; determining one or more properties of the blind via, the one or more properties comprising a top diameter, a bottom diameter, a volume, or a taper angle of about 80° or more; focusing a laser beam at the substrate to remove at least a portion of the mask layer; adjusting the laser process parameters based on the one or more properties; and focusing the laser beam, under the adjusted laser process parameters, to remove at least a portion of the dielectric layer within the volume to form the blind via. In some embodiments, the mask layer can be pre-etched. In another embodiment is provided an apparatus for forming a blind via in a substrate.
Abstract:
A method and apparatus for cleaning a process chamber are provided. In one embodiment, a process chamber is provided that includes a remote plasma source and a process chamber having at least two processing regions. Each processing region includes a substrate support assembly disposed in the processing region, a gas distribution system configured to provide gas into the processing region above the substrate support assembly, and a gas passage configured to provide gas into the processing region below the substrate support assembly. A first gas conduit is configured to flow a cleaning agent from the remote plasma source through the gas distribution assembly in each processing region while a second gas conduit is configured to divert a portion of the cleaning agent from the first gas conduit to the gas passage of each processing region.