摘要:
A method for reducing whisker formation and preserving solderability in tin coatings over metal features of electronic components. The tin coating has internal tensile stress and is between about 0.5 μm and about 4.0 μm in thickness. There is a nickel-phosphorus layer under the tin coating.
摘要:
A method for reducing whisker formation in tin coatings over metal features of electronic components. The tin coating has internal tensile stress and is between about 0.5 μm and about 4.0 μm in thickness.
摘要:
A method for reducing whisker formation and preserving solderability in tin coatings over metal features of electronic components. The tin coating has internal tensile stress and is between about 0.5 m and about 4.0 m in thickness. There is a nickel-based layer under the tin coating.
摘要:
In accordance with the present invention, an electroplating solution is provided for electroplating satin bright tin-bismuth alloy solder coatings in high speed electroplating applications. The solution comprises a sulfonic acid electrolyte, a soluble tin compound, a soluble bismuth compound, a non-ionic surfactant, a grain refiner and an antioxidant. The preferred non-ionic surfactant comprises a mixture of polyethylene glycol-block-polypropylene glycol, polyethylene glycol-ran-polypropylene glycol, and ethylenediamine tetrakis (polyethylene glycol-block-polypropylene glycol) tetrol.
摘要:
In accordance with the present invention, an electroplating solution is provided for electroplating satin bright tin-copper alloy solder coatings at high speed. The preferred solution comprises sulfonic acid, tin sulfonate, copper sulfonate, non-ionic surfactant, satin brightener and an antioxidant catechol. The preferred surfactant is polyoxyethylene-block-polyoxypropylene. The preferred satin brightener is formed by the oxidation of an aqueous solution of 1-phenyl-3-parazolidinone. The preferred sulfonic acid is methanesulfonic acid.
摘要:
A device including a heat sensitive substrate and an electrical conductor disposed thereon is provided. In certain examples, the heat sensitive substrate may be configured to degrade at or above a sintering temperature. In other examples, the electrical conductor may be processed, prior to disposal on the heat sensitive substrate, at the sintering temperature on a second substrate that can withstand the sintering temperature. Methods and kits are also disclosed.
摘要:
A device including a heat sensitive substrate and an electrical conductor disposed thereon is provided. In certain examples, the heat sensitive substrate may be configured to degrade at or above a sintering temperature. In other examples, the electrical conductor may be processed, prior to disposal on the heat sensitive substrate, at the sintering temperature on a second substrate that can withstand the sintering temperature. Methods and kits are also disclosed.
摘要:
Conductive patterns and methods of using and printing such conductive patterns are disclosed. In certain examples, the conductive patterns may be produced by disposing a conductive material between supports on a substrate. The supports may be removed to provide conductive patterns having a desired length and/or geometry.
摘要:
Methods for attachment of a die to a substrate are disclosed. In certain examples, the method comprises disposing a capped nanomaterial on a substrate, disposing a die on the disposed capped nanomaterial, drying the disposed capped nanomaterial and the disposed die, and sintering the dried disposed die and the dried capped nanomaterial at a temperature of 300° C. or less to attach the die to the substrate.
摘要:
A mask for application to a substrate to facilitate electrokinetic deposition of charged particles onto the substrate, the mask comprising a conducting layer, a dielectric layer, and mask openings. A method for applying a pattern of charged particles to a substrate comprising applying the foregoing the substrate to yield a masked substrate; immersing the masked substrate in a bath containing the charged particles; and establishing an electrical potential between the conducting layer of the mask and a counter-electrode thereby electrokinetically depositing the particles through the mask openings onto areas of the substrate exposed in the mask openings. Products made by this method.