摘要:
A semiconductor device has a semiconductor die mounted to a substrate. A recess is formed in a back surface of the semiconductor die to an edge of the semiconductor die with sidewalls on at least two sides of the semiconductor die. The sidewalls are formed by removing a portion of the back surface of the die, or by forming a barrier layer on at least two sides of the die. A channel can be formed in the back surface of the semiconductor die to contain the TIM. A TIM is formed in the recess. A heat spreader is mounted in the recess over the TIM with a down leg portion of the heat spreader thermally connected to the substrate. The sidewalls contain the TIM to maintain uniform coverage of the TIM between the heat spreader and back surface of the semiconductor die.
摘要:
A semiconductor device has a semiconductor die mounted to a substrate. A recess is formed in a back surface of the semiconductor die to an edge of the semiconductor die with sidewalls on at least two sides of the semiconductor die. The sidewalls are formed by removing a portion of the back surface of the die, or by forming a barrier layer on at least two sides of the die. A channel can be formed in the back surface of the semiconductor die to contain the TIM. A TIM is formed in the recess. A heat spreader is mounted in the recess over the TIM with a down leg portion of the heat spreader thermally connected to the substrate. The sidewalls contain the TIM to maintain uniform coverage of the TIM between the heat spreader and back surface of the semiconductor die.
摘要:
A semiconductor device has a substrate and insulating layer formed over a surface of the substrate. A first conductive layer is formed over the surface of the substrate. A second conductive layer is formed over an opposing surface of the substrate. A conductive via is formed through the substrate. An opening is formed in the insulating layer while leaving the first conductive layer intact. The opening narrows with a non-linear side or linear side. The opening can have a rectangular shape. A semiconductor die is mounted over the surface of the substrate. An underfill material is deposited between the semiconductor die and substrate. The opening in the insulating layer reduces a flow rate of the underfill material proximate to the opening. The flow rate of the underfill material proximate to the opening is substantially equal to a flow rate of the underfill material away from the opening.
摘要:
A semiconductor device has a substrate. An insulating layer is formed over a surface of the substrate. A semiconductor die is mounted over the surface of the substrate. A channel is formed in the insulating layer around the semiconductor die. An underfill material is deposited between the semiconductor die and the substrate and in the channel. A heat spreader is mounted over the semiconductor die with the heat spreader thermally connected to the substrate. A thermal interface material is formed over the semiconductor die. The underfill material is deposited between the semiconductor die and the substrate along a first edge of the semiconductor die and along a second edge of the semiconductor die opposite the first edge. The channel extends partially through the insulating layer formed over the substrate with the insulating layer maintaining coverage over the substrate within a footprint of the channel.
摘要:
A semiconductor device has a substrate. An insulating layer is formed over a surface of the substrate. A semiconductor die is mounted over the surface of the substrate. A channel is formed in the insulating layer around the semiconductor die. An underfill material is deposited between the semiconductor die and the substrate and in the channel. A heat spreader is mounted over the semiconductor die with the heat spreader thermally connected to the substrate. A thermal interface material is formed over the semiconductor die. The underfill material is deposited between the semiconductor die and the substrate along a first edge of the semiconductor die and along a second edge of the semiconductor die opposite the first edge. The channel extends partially through the insulating layer formed over the substrate with the insulating layer maintaining coverage over the substrate within a footprint of the channel.
摘要:
A semiconductor device has a substrate and insulating layer formed over a surface of the substrate. A first conductive layer is formed over the surface of the substrate. A second conductive layer is formed over an opposing surface of the substrate. A conductive via is formed through the substrate. An opening is formed in the insulating layer while leaving the first conductive layer intact. The opening narrows with a non-linear side or linear side. The opening can have a rectangular shape. A semiconductor die is mounted over the surface of the substrate. An underfill material is deposited between the semiconductor die and substrate. The opening in the insulating layer reduces a flow rate of the underfill material proximate to the opening. The flow rate of the underfill material proximate to the opening is substantially equal to a flow rate of the underfill material away from the opening.
摘要:
A semiconductor device has a semiconductor die with a first conductive layer formed over an active surface of the semiconductor die. An insulation layer is formed over the active surface of the semiconductor die. A second conductive layer is conformally applied over the insulating layer and first conductive layer. Conductive pillars are formed over the first conductive layer. Conductive rings are formed around a perimeter of the conductive pillars. A conductive material is deposited over the surface of the conductive pillars within the conductive rings. A substrate has a third conductive layer formed over a surface of the substrate. The semiconductor die is mounted to a substrate with the third conductive layer electrically connected to the conductive material within the conductive rings. The conductive rings inhibit outward flow of the conductive material from under the conductive pillars to prevent electrical bridging between adjacent conductive pillars.
摘要:
A semiconductor device has a semiconductor die with a first conductive layer formed over an active surface of the semiconductor die. An insulation layer is formed over the active surface of the semiconductor die. A second conductive layer is conformally applied over the insulating layer and first conductive layer. Conductive pillars are formed over the first conductive layer. Conductive rings are formed around a perimeter of the conductive pillars. A conductive material is deposited over the surface of the conductive pillars within the conductive rings. A substrate has a third conductive layer formed over a surface of the substrate. The semiconductor die is mounted to a substrate with the third conductive layer electrically connected to the conductive material within the conductive rings. The conductive rings inhibit outward flow of the conductive material from under the conductive pillars to prevent electrical bridging between adjacent conductive pillars.
摘要:
A semiconductor device has an interposer with a die attach area interior to the interposer and cover attach area outside the die attach area. A channel is formed into a surface of the interposer within the cover attach area. A dam material is formed over the surface of the interposer within the cover attach area between the channel and edge of the interposer. A semiconductor die is mounted to the die attach area of the interposer. An adhesive material is deposited in the cover attach area away from the channel and dam material. A cover, such as a heat spreader or shielding layer, is mounted to the die and interposer within the cover attach area. The cover presses the adhesive material into the channel and against the dam material to control outward flow of the adhesive material. Alternatively, ACF can be formed over the interposer to mount the cover.
摘要:
A semiconductor device has an interposer with a die attach area interior to the interposer and cover attach area outside the die attach area. A channel is formed into a surface of the interposer within the cover attach area. A dam material is formed over the surface of the interposer within the cover attach area between the channel and edge of the interposer. A semiconductor die is mounted to the die attach area of the interposer. An adhesive material is deposited in the cover attach area away from the channel and dam material. A cover, such as a heat spreader or shielding layer, is mounted to the die and interposer within the cover attach area. The cover presses the adhesive material into the channel and against the dam material to control outward flow of the adhesive material. Alternatively, ACF can be formed over the interposer to mount the cover.