摘要:
Improved mechanical and adhesive strength and resistance to breakage of copper integrated circuit interconnections is obtained by forming a copper alloy in a copper via/wiring connection in an integrated circuit while minimizing adverse electrical effects of the alloy by confining the alloy to an interfacial region of said via/wiring connection and not elsewhere by a barrier which reduces or substantially eliminates the thickness of alloy in the conduction path. The alloy location and composition are further stabilized by reaction of all available alloying material with copper, copper alloys or other metals and their alloys.
摘要:
Improved mechanical and adhesive strength and resistance to breakage of copper integrated circuit interconnections is obtained by forming a copper alloy in a copper via/wiring connection in an integrated circuit while minimizing adverse electrical effects of the alloy by confining the alloy to an interfacial region of said via/wiring connection and not elsewhere by a barrier which reduces or substantially eliminates the thickness of alloy in the conduction path. The alloy location and composition are further stabilized by reaction of all available alloying material with copper, copper alloys or other metals and their alloys.
摘要:
A method for manufacturing a structure includes providing a structure having an insulator layer with at least one interconnect and forming a sub lithographic template mask on the insulator layer. A selective etching step is used for etching the insulator layer through the sub lithographic template mask to form sub lithographic features near the at least one interconnect. A supra lithographic blocking mask may also be utilized. In another aspect, the method includes forming pinch off sections of sub lithographic size formed in a capping layer on the insulator layer. A semiconductor structure includes an insulator layer having at least one interconnect feature and at least one column formed in the insulator layer. A plurality of sub lithographic features formed on a top portion of the insulator layer and communicating with the at least one column is also provided. The plurality of sub lithographic features have a cross section or diameter less than any of the at least one column. A gap may be prohibited from forming on or near scribe lanes and vias
摘要:
A structure and method for low-pressure wirebonding, reducing the propensity of dielectric material to mechanical failure due to wirebond stress. A low temperature alloy on the surface of a bond pad allows alloy bond formation to occur between the wire and the bond pad at reduced bond pressures and reduced thermal and ultrasonic energies. Preferred alloys include Au—Sn and Au—In. The Au—Sn alloy may be formed over the Cu bond pad, incorporated in an aluminum bond pad stack, or deposited on a bond pad having Ni—Au capping of Cu or Al bond pads.
摘要:
Methods are disclosed for forming dual damascene back-end-of-line (BEOL) interconnect structures using materials for the vias or studs which are different from those used for the line conductors, or using materials for the via liner which are different from those used for the trench liner, or having a via liner thickness different from that of the trench liner. Preferably, a thick refractory metal is used in the vias for improved mechanical strength while using only a thin refractory metal in the trenches to provide low resistance.
摘要:
Methods are disclosed for forming dual damascene back-end-of-line (BEOL) interconnect structures using materials for the vias or studs which are different from those used for the line conductors, or using materials for the via liner which are different from those used for the trench liner, or having a via liner thickness different from that of the trench liner. Preferably, a thick refractory metal is used in the vias for improved mechanical strength while using only a thin refractory metal in the trenches to provide low resistance.
摘要:
Interconnect structures are disclosed for forming dual damascene back-end-of-line (BEOL) structure using materials for the vias or studs which are different from those used for the line conductors, or using materials for the via liner which are different from those used for the trench liner, or having a via liner thickness different from that of the trench liner. Preferably, a thick refractory metal is used in the vias for improved mechanical strength while using only a thin refractory metal in the trenches to provide low resistance.
摘要:
Resistors that avoid the problems of miniaturization of semiconductor devices and a related method are disclosed. In one embodiment, a resistor includes a planar resistor material that extends vertically within at least one metal layer of a semiconductor device. In another embodiment, a resistor includes a resistor material layer extending between a first bond pad and a second bond pad of a semiconductor device. The two embodiments can be used alone or together. A related method for generating the resistors is also disclosed.
摘要:
An interlayer connector for preventing delamination of semiconductor layers, and methods of forming the connector are disclosed. The connector includes a first connector head in a first distal layer, a second connector head in a second distal layer and a connector body coupling the first and second connector heads. Each connector head has a dimension greater is size than the connector body such that the layers are securely held together. The interlayer connector may be isolated from current-carrying wiring or provided in the form of a contact via. The interlayer connector provides a mechanical mechanism to prevent layers from delaminating regardless of the materials used. The invention also eliminates the need for white space fill above and below via fill by using the connectors coplanar with the on device wiring.
摘要:
Methods and structures having pore-closing layers for closing exposed pores in a patterned porous low-k dielectric layer, and optionally a reactive liner on the low-k dielectric. A first reactant is absorbed or retained in exposed pores in the patterned dielectric layer and then a second reactant is introduced into openings such that it enters the exposed pores, while first reactant molecules are simultaneously being outgassed. The second reactant reacts in-situ with the outgassed first reactant molecules at a mouth region of the exposed pores to form the pore-closing layer across the mouth region of exposed pores, while retaining a portion of each pore's porosity to maintain characteristics and properties of the porous low-k dielectric layer. Optionally, the first reactant may be adsorbed onto the low-k dielectric such that upon introduction of the second reactant into the patterned dielectric openings, a reactive liner is also formed on the low-k dielectric.