摘要:
A carrier structure and method for fabricating a carrier structure with through-vias each having a conductive structure with an effective coefficient of thermal expansion which is less than or closely matched to that of the substrate, and having an effective elastic modulus value which is less than or closely matches that of the substrate. The conductive structure may include concentric via fill areas having differing materials disposed concentrically therein, a core of the substrate material surrounded by an annular ring of conductive material, a core of CTE-matched non-conductive material surrounded by an annular ring of conductive material, a conductive via having an inner void with low CTE, or a full fill of a conductive composite material such as a metal-ceramic paste which has been sintered or fused.
摘要:
A carrier structure and method for fabricating a carrier structure with through-vias each having a conductive structure with an effective coefficient of thermal expansion which is less than or closely matched to that of the substrate, and having an effective elastic modulus value which is less than or closely matches that of the substrate. The conductive structure may include concentric via fill areas having differing materials disposed concentrically therein, a core of the substrate material surrounded by an annular ring of conductive material, a core of CTE-matched non-conductive material surrounded by an annular ring of conductive material, a conductive via having an inner void with low CTE, or a full fill of a conductive composite material such as a metal-ceramic paste which has been sintered or fused.
摘要:
A method for filling vias, and in particular initially blind vias, in a wafer, and various apparatus for performing the method, comprising evacuating air from the vias; trapping at least a portion of the wafer and a paste for filling the vias between two surfaces; and pressurizing the paste to fill the vias.
摘要:
Conductive through vias are formed in electronic devices and electronic device carrier, such as, a silicon chip carrier. An annulus cavity is etched into the silicon carrier from the top side of the carrier and the cavity is filled with insulating material to form an isolation collar around a silicon core region. An insulating layer with at least one wiring level, having a portion in contact with the silicon core region, is formed on the top side of the carrier. Silicon is removed from the back side of the carrier sufficient to expose the distal portion of the isolation collar. The core region is etched out to expose the portion of the wiring level in contact with the silicon core region to form an empty via. The via is filled with conductive material in contact with the exposed portion of the wiring level to form a conductive through via to the wiring level. A solder bump formed, for example, from low melt C4 solder, is formed on the conductive via exposed on the carrier back side. The process acts to make the conductive via fill step independent of the via isolation step.
摘要:
Techniques for electronic device fabrication are provided. In one aspect, an electronic device is provided. The electronic device comprises at least one interposer structure having one or mote vias and a plurality of decoupling capacitors integrated therein, the at least one interposer structure being configured to allow for one or more of the plurality of decoupling capacitors to be selectively deactivated. In another aspect, a method of fabricating an electronic device comprising at least one interposer structure having one or more vias and a plurality of decoupling capacitors integrated therein comprises the following step. One or more of the plurality of decoupling capacitors are selectively deactivated
摘要:
Techniques for electronic device fabrication are provided. In one aspect, an electronic device is provided. The electronic device comprises at least one interposer structure having one or more vias and a plurality of decoupling capacitors integrated therein, the at least one interposer structure being configured to allow for one or more of the plurality of decoupling capacitors to be selectively deactivated. In another aspect, a method of fabricating an electronic device comprising at least one interposer structure having one or more vias and a plurality of decoupling capacitors integrated therein comprises the following step. One or more of the plurality of decoupling capacitors are selectively deactivated.
摘要:
A Silicon Based Package (SBP) is formed starting with a thick wafer, which serves as the base for the SBP, composed of silicon which has a first surface and a reverse surface which are planar. Then form an interconnection structure including metal capture structures in contact with the first surface and multilayer conductor patterns over the first surface. Form a temporary bond between the SBP and a wafer holder, with the wafer holder being a rigid structure. Thin the reverse side of the wafer to a desired thickness to form an Ultra Thin Silicon Wafer (UTSW) for the SBP. Form via holes with tapered or vertical sidewalls, which extend through the UTSW to reach the metal capture structures. Then form metal pads in the via holes which extend through the UTSW, making electrical contact to the metal capture structures. Then bond the metal pads in the via holes to pads of a carrier.
摘要:
An electronic device and method of packaging an electronic device. The device including: a first substrate, a second substrate and an integrated circuit chip having a first side and an opposite second side, a first set of chip pads on the first side and a second set of chip pads on the second side of the integrated circuit chip, chip pads of the first set of chip pads physically and electrically connected to corresponding substrate pads on the first substrate and chip pads of the second set of chip pads physically and electrically connected to substrate pads of the substrate.
摘要:
A resistor with heat sink is provided. The heat sink includes a conductive path having metal or other thermal conductor having a high thermal conductivity. To avoid shorting the electrical resistor to ground with the thermal conductor, a thin layer of high thermal conductivity electrical insulator is interposed between the thermal conductor and the body of the resistor. Accordingly, a resistor can carry large amounts of current because the high conductivity thermal conductor will conduct heat away from the resistor to a heat sink. Various configurations of thermal conductors and heat sinks are provided offering good thermal conductive properties in addition to reduced parasitic capacitances and other parasitic electrical effects, which would reduce the high frequency response of the electrical resistor.