Abstract:
A method includes placing a substrate on a first curved surface of a first bending tool, using a second bending tool with a second surface to apply pressure to the substrate, thereby pressing the substrate onto the first curved surface and bending the substrate, and removing the bended substrate from the first bending tool.
Abstract:
One aspect of the invention relates to producing a dried paste layer on a joining partner. For this purpose, a joining partner having a contact surface is provided, to which contact surface a paste is applied. Furthermore, a heating device is provided, which is preheated to a preheating temperature. The paste applied to the contact surface is then dried during a drying phase, such that a dried paste layer arises from the paste. In the drying phase, the joining partner and the preheated heating device are at a distance of at most 5 mm.
Abstract:
A method includes placing a semiconductor substrate on a first curved surface of a first bending tool, using a second bending tool with a second surface to apply pressure to the semiconductor substrate, thereby pressing the semiconductor substrate onto the first curved surface and bending the semiconductor substrate, and removing the bended semiconductor substrate from the first bending tool.
Abstract:
A method includes placing a semiconductor substrate on a first curved surface of a first bending tool, using a second bending tool with a second surface to apply pressure to the semiconductor substrate, thereby pressing the semiconductor substrate onto the first curved surface and bending the semiconductor substrate, and removing the bended semiconductor substrate from the first bending tool.
Abstract:
An embodiment of a semiconductor device includes a semiconductor body having a first main surface. The semiconductor body includes an active device area and an edge termination area at least partly surrounding the active device area. The semiconductor device further includes a contact electrode on the first main surface and electrically connected to the active device area. The semiconductor device further includes a passivation structure on the edge termination area and laterally extending into the active device area. The semiconductor device further includes an encapsulation structure on the passivation structure and covering a first edge of the passivation structure above the contact electrode.
Abstract:
A semiconductor chip includes a semiconductor body having a lower side with a lower chip metallization applied thereto. A first contact metallization layer is produced on the lower chip metallization. A second contact metallization layer is produced on a metal surface of a substrate. The semiconductor chip and the substrate are pressed onto one another for a pressing time so that the first and second contact metallization layers bear directly and extensively on one another. During the pressing time, the first contact metallization layer is kept continuously at temperatures which are lower than the melting temperature of the first contact metallization layer. The second contact metallization layer is kept continuously at temperatures which are lower than the melting temperature of the second contact metallization layer during the pressing time. After the pressing together, the first and second contact metallization layers have a total thickness less than 1000 nm.
Abstract:
A method includes providing a subassembly having a circuit carrier with a first metallic surface portion, a first joining partner, which is integrally connected to the first metallic surface portion by means of a first connecting layer, and a second metallic surface portion. In a heat treatment, the second metallic surface portion is held uninterruptedly at temperatures which are higher than a minimum heat-treatment temperature of at least 300° C. Moreover, a second joining partner is provided. A fixed connection is produced between the second joining partner and the subassembly in that the second joining partner is integrally connected to the subassembly following completion of the heat treatment on the second surface portion.
Abstract:
An embodiment of a semiconductor device includes a semiconductor body having a first main surface. The semiconductor body includes an active device area and an edge termination area at least partly surrounding the active device area. The semiconductor device further includes a contact electrode on the first main surface and electrically connected to the active device area. The semiconductor device further includes a passivation structure on the edge termination area and laterally extending into the active device area. The semiconductor device further includes an encapsulation structure on the passivation structure and covering a first edge of the passivation structure above the contact electrode.
Abstract:
A method includes placing a substrate on a first curved surface of a first bending tool, using a second bending tool with a second surface to apply pressure to the substrate, thereby pressing the substrate onto the first curved surface and bending the substrate, and removing the bended substrate from the first bending tool.
Abstract:
A method includes providing a subassembly having a circuit carrier with a first metallic surface portion, a first joining partner, which is integrally connected to the first metallic surface portion by means of a first connecting layer, and a second metallic surface portion. In a heat treatment, the second metallic surface portion is held uninterruptedly at temperatures which are higher than a minimum heat-treatment temperature of at least 300° C. Moreover, a second joining partner is provided. A fixed connection is produced between the second joining partner and the subassembly in that the second joining partner is integrally connected to the subassembly following completion of the heat treatment on the second surface portion.