摘要:
The present invention provides a bonding material and a method of bonding for metal bonding at a bonding interface capable of a higher bonding strength at a lower temperature without application of pressure, compared to a bonding material of metal particles having an average particle size of not greater than 100 nm. An electrically conductive bonding material including (A) silver particles, (B) silver oxide, and (C) a dispersant including organic material containing not more than 30 carbon atoms as essential components, wherein a total amount of (A) the silver powder, (B) the silver oxide powder, and (C) the dispersant including an organic material containing not more than 30 carbon atoms is in a range of 99.0% to 100% by weight, is provided. In other words, no resin binder is contained.
摘要:
An electronic device and a method for producing an electronic device are disclosed. In an embodiment the electronic device includes a first component and a second component and a sinter layer connecting the first component to the second component, the sinter layer comprising a first metal, wherein at least one of the components comprises at least one contact layer which is arranged in direct contact with the sinter layer, which comprises a second metal different from the first metal and which is free of gold.
摘要:
A semiconductor chip includes a semiconductor body having a lower side with a lower chip metallization applied thereto. A first contact metallization layer is produced on the lower chip metallization. A second contact metallization layer is produced on a metal surface of a substrate. The semiconductor chip and the substrate are pressed onto one another for a pressing time so that the first and second contact metallization layers bear directly and extensively on one another. During the pressing time, the first contact metallization layer is kept continuously at temperatures which are lower than the melting temperature of the first contact metallization layer. The second contact metallization layer is kept continuously at temperatures which are lower than the melting temperature of the second contact metallization layer during the pressing time. After the pressing together, the first and second contact metallization layers have a total thickness less than 1000 nm.
摘要:
A sintering paste includes solvent and nanomicrocrystallite (NMC) particles. Each NMC particle is a single crystallite having at least one dimension in the range of 1 nm to 100 nm and at least one dimension in the range of 0.1 μm to 1000 μm. The sintering paste may be used in a pressureless sintering process to form a low porosity joint having high bond strength, high electrical and thermal conductivity, and high thermal stability.
摘要:
A sintering paste includes solvent and nanomicrocrystallite (NMC) particles. Each NMC particle is a single crystallite having at least one dimension in the range of 1 nm to 100 nm and at least one dimension in the range of 0.1 μm to 1000 μm. The sintering paste may be used in a pressureless sintering process to form a low porosity joint having high bond strength, high electrical and thermal conductivity, and high thermal stability.
摘要:
A semiconductor chip includes a semiconductor body having a lower side with a lower chip metallization applied thereto. A first contact metallization layer is produced on the lower chip metallization. A second contact metallization layer is produced on a metal surface of a substrate. The semiconductor chip and the substrate are pressed onto one another for a pressing time so that the first and second contact metallization layers bear directly and extensively on one another. During the pressing time, the first contact metallization layer is kept continuously at temperatures which are lower than the melting temperature of the first contact metallization layer. The second contact metallization layer is kept continuously at temperatures which are lower than the melting temperature of the second contact metallization layer during the pressing time. After the pressing together, the first and second contact metallization layers have a total thickness less than 1000 nm.
摘要:
An object is to provide a semiconductor device capable of preventing an alternating leakage current from flowing into a voltage detection circuit. The semiconductor device includes an antenna circuit, a resonance frequency regulating circuit, a voltage detection circuit, and a first capacitor. The resonance frequency regulating circuit includes a second capacitor including one terminal electrically connected to a first terminal of the antenna circuit; and a transistor including a first terminal electrically connected to the other terminal of the second capacitor, a second terminal electrically connected to a second terminal of the antenna circuit, and a gate electrically connected to the first capacitor and the voltage detection circuit.
摘要:
An object is to provide a semiconductor device capable of preventing an alternating leakage current from flowing into a voltage detection circuit. The semiconductor device includes an antenna circuit, a resonance frequency regulating circuit, a voltage detection circuit, and a first capacitor. The resonance frequency regulating circuit includes a second capacitor including one terminal electrically connected to a first terminal of the antenna circuit; and a transistor including a first terminal electrically connected to the other terminal of the second capacitor, a second terminal electrically connected to a second terminal of the antenna circuit, and a gate electrically connected to the first capacitor and the voltage detection circuit.
摘要:
The present invention provides a bonding material and a method of bonding for metal bonding at a bonding interface capable of a higher bonding strength at a lower temperature without application of pressure, compared to a bonding material of metal particles having an average particle size of not greater than 100 nm. An electrically conductive bonding material including (A) silver particles, (B) silver oxide, and (C) a dispersant including organic material containing not more than 30 carbon atoms as essential components, wherein a total amount of (A) the silver powder, (B) the silver oxide powder, and (C) the dispersant including an organic material containing not more than 30 carbon atoms is in a range of 99.0% to 100% by weight, is provided. In other words, no resin binder is contained.