摘要:
Disclosed is a method of manufacturing a printed circuit panel. The method is carried out without a cleanroom, but in a clean room environment. The first step is to place a thin, non-rigid panel in a suitable fixture, for example, for transfer and also for processing. The fixtured panel is then placed in an air tight transfer container, which has a substantially contaminant free atmosphere. The transfer container has a sealed door at one end. The transfer container is then brought into a seaiable, substantially airtight interlock with a process enclosure. This process enclosure also has a substantially contaminant free atmosphere, and a sealed door at one end. An airtight seal is formed between the transfer container and the process enclosure, and also between the surfaces of the two doors. This is to avoid introducing surface contaminants into the process enclosure and transfer container atmospheres. Next, the two doors are opened simultaneously. This is to allow the transfer of at least one panel and its fixture from the transfer container into the process enclosure. Inside the process enclosure the panel is transferred to a process station for a manufacturing process. Finally, the panel and its fixture are transferred from the process enclosure into the transfer container. This may be the same container or a different container. The doors of the process enclosure and the transfer container are then closed and sealed.
摘要:
Disclosed is a manufacturing system having isolated islands of "clean room" environment connected by inter-process transfer containers for transfering in-process workpieces. The system has airlock transfer ports between the process enclosures and the inter-process transfer containers. The make and break airlock transfer ports have facing sealable doors in the process enclosure and the transfer container. These doors are in air sealable facing recesses of the process enclosure and the transfer container. At least one peripheral gasket surrounds the recesses and the pair of doors. This provides a substantially clean room environment in the airlock. The sealable door in the interprocess transfer container is fabricated of a ferromagnetic material and is seated on a ferromagnetic gasket, while the sealable door in the process enclosure has a controllable electromagnetic clamp. After establishment of an airtight seal between the two recesses, the doors are opened by activating the electromagnetic clamp in the process enclosure door to pull the ferromagnetic door in the interprocess transfer container away from the ferromagnetic gasket. The results in the simultaneous opening of the of the process enclosure door and the ferromagnetic interprocess transfer container door, while avoiding contamination inside either of the containers.
摘要:
Disclosed is a system for handling large area, in-process, circuit panel layers. The circuit panel layers are thin and flimsy, and require rigid support for certain processing steps. The system includes a peripheral frame fixture for surrounding and supporting the in process circuit panel layer, and a a loading chuck for mounting the in-process circuit panel layer in the peripheral frame fixture. The peripheral frame fixture includes a bottom plate having a central opening to expose the circuit panel layer, a top frame having a corresponding central opening to expose the opposite surface of the circuit panel layer, and a compressive apparatus, as screws, bolts, or the like, for applying a z axis compressive force to the bottom plate, the top frame, and a panel layer therebetween. Optionally, the fixture may include alignment pins or fiducials for aligning the bottom plate, a panel layer, and the top frame, and a robotic interface for a robotic arm to grasp and transfer the peripheral frame fixture. The system also includes a loading chuck for mounting the in-process circuit panel layer in the peripheral frame fixture. The loading chuck includes a peripheral edge for receiving the bottom plate of the peripheral frame fixture. This provides co-planarity of the in-process circuit panel layer, the bottom plate of the peripheral frame fixture, and the vacuum table. The vacuum table is within the area bounded by the peripheral edge of the loading chuck and the peripheral frame of the peripheral frame fixture, and is coplanar with them. The vacuum table includes slidable bearing surfaces, with vacuum apertures for drawing a vacuum to hold the panel in place, and slide actuators for moving the slidable bearing surfaces to apply x-y axis tension to a panel on the bearing surfaces.
摘要:
Disclosed is a transfer container for carrying circuit panels in and between substantially contaminant free environments. The walls of the transfer container are fabricated out of substantially particulate free, unfilled polymers, such as polycarbonate. One of the end walls is an access wall. The access wall has an opening surrounded by a ferromagnetic gasket. This gasketed opening is adapted to receive a ferromagnetic door panel. The side walls, and the top and bottom walls may extend beyond the access wall, with the ends of said walls defining a plane, so that the access wall is recessed with respect to the plane defined by the said extensions. Each of the side walls have co-planar bracket pairs for holding circuit panels. Either one of, or preferably both brackets of a bracket pair have pyramidal or conical positioning pins. These pins extend upwardly from the brackets and are adapted to receive and hold a workpiece in place.
摘要:
An electrical structure, and associated method of fabrication, for reducing thermally induced strain in a structure that couples a first conductive body of a first substrate to a second conductive body of a second substrate (e.g., a chip to a chip carrier; a chip carrier to a circuit card). The melting point of the first conductive body exceeds the melting point of the second conductive body. The second conductive body may include eutectic lead-tin alloy, while the first conductive body may include non-eutectic lead-tin alloy. A portion of the first conductive body is coated with, or volumetrically surrounded by, a material that is nonsolderable and nonconductive. The first and second conductive bodies are coupled mechanically and electrically by surface adhesion at an uncoated portion of the first conductive body, by application of a temperature that lies between the melting points of the first and second conductive bodies.
摘要:
A method and structure for conductively coupling a metallic stiffener to a chip carrier. A substrate has a conductive pad on its surface and an adhesive layer is formed on the substrate surface. The metallic stiffener is placed on the adhesive layer, wherein the adhesive layer mechanically couples the stiffener to the substrate surface and electrically couples the stiffener to the pad. The adhesive layer is then cured such as by pressurization at elevated temperature. Embodiments of the present invention form the adhesive layer by forming an electrically conductive contact on the pad and setting a dry adhesive on the substrate, such that the electrically conductive contact is within a hole in the dry adhesive. The electrically conductive contact electrically couples the stiffener to the pad. The curing step includes curing both the dry adhesive and the electrically conductive contact, resulting in the dry adhesive adhesively coupling the stiffener to the substrate. The electrically conductive contact may include an electrically conductive adhesive or a metallic solder. Additional embodiments of the present invention form the adhesive layer by applying an electrically conductive adhesive on the substrate, wherein after the stiffener is placed on the adhesive layer, the electrically conductive adhesive mechanically and electrically couples the stiffener to the surface of the substrate.
摘要:
A method for aligning a plurality of thin film transistor tiles for constructing a flat panel display. A coverplate is arranged on a coverplate support. A first layer of a bonding material is applied to at least one of a first side of each of the tiles and a surface of the coverplate on which the tiles are to be secured. The tiles are arranged on the coverplate, such that the first layer of bonding material is arranged between the tiles and the coverplate. The tiles are connected to an alignment apparatus. The tiles are aligned relative to each other and the coverplate. The tiles are at least partially secured to the coverplate.
摘要:
A method of making an electrically conductive contact on a substrate by applying a layer of solder paste to a circuitized feature on a substrate and selectively heating and melting the solder paste over the feature to form a solder bump. The excess solder paste is removed. A focused energy heat source such as a laser beam or focused Infrared heats the solder paste. In another embodiment, a reflective mask with apertures may be used to allow focused heating source to selectively melt areas of the solder paste layer applied to a circuitized feature. In yet another embodiment, a reflective mask with apertures filled with solder paste is applied onto a substrate and then heated to cause localized solder melting. The mask and excess solder paste are removed.
摘要:
A screen printing fixture holds a flexible circuit board having components attached to one side, to allow screening a pattern of solder paste onto the second side for subsequent attachment of components to that side. In an electronic package assembly a flexible circuit board with components is wound about a heat spreader assembly having a cavity so that at least one component on the flexible circuit board is positioned within the cavity and in thermal connection to the heat spreader.
摘要:
A stiffener (34 or 52 or 72) includes a pathway which allows gases and fluids, such as air, to be vented from the interface between surface bonding regions (35 or 60 or 74) of the stiffener and an adhesive (38 or 56 or 80) on a flexible substrate (36 or 54 or 78). The pathway may take the form of a porous material used for the stiffener or one or more bore holes (58 or 59 or 70) formed in the stiffener. The stiffener may also include an internal cavity (76) for promoting venting of fluids and gases. By venting fluid and gases from the adhesive/stiffener interface, better adhesion between the stiffener and flexible substrate is achieved.